- •1.Определения биологии как науки. Связь биологии с другими науками. Значение биологии для медицины.
- •5. Клеточная теория. Значение теории в обосновании диалетико-материалистической концепции единства жизни.
- •6. Клетка как открытая система. Организация потоков вещества, энергии в клетке.
- •7. Энергообразующие системы клетки и их характеристики. Фазы диссимиляции у гетеротрофов.
- •8.Ассимиляция в гетеротрофной клетке. Её фазы.Сущность
- •9. Гликолиз и тканевое дыхание. Сущность, биологическое значение. Энергообразующие системы клетки. Окислительное фосфорилирование. Роль.
- •11.Гипотезы происхождения эукариотических клеток (симбиотическая и инвагинационная).
- •12. Клеточный цикл. Его периодизация. Митотический цикл и его механизмы. Проблемы клеточной пролиферации в медицине.
- •13. Физиологическая и репаративная регенерация. Биологическое и медицинское значениепроблем регенерации.
- •14. Временная организация клетки. Клеточный и митотический цикл. Строение хромосом и динамика её структур в клеточном цикле. Гетеро- и эухроматин.
- •15. Строение днк. Модель днк Уотсона-Крика. Нуклеотиды, участки с уникальными и повторяющимися последовательностями нуклеотидов, их функциональное значение.
- •16. Основные требования, предъявляемые к материальному субстрату, ответственному за наследственность. Реализация наследственной информации.
- •17 Этапы синтеза белка (экспрессия гена). Пути транспорта синтезированного белка в клетке и за её пределами.
- •18.Линейное расположение генов в хромосомах. Сцепление генов. Кроссинговер.
- •20. Кодирование и реализация биологической информации в клетке. Кодовая система днк и белка. Экспериментальное обоснование триплетного кода в опытах Ниринберга.
- •21. Экспериментальные доказательства роли днк в передаче наследственной информации в клетке.
- •22.Этапы экспрессии генов в процессе биосинтеза белка. Альтернативный сплайсинг. Регуляция этапов транскрипции и трансляции. Роль микро-рнк. Геном человека.
- •23.Регуляция работы генов. Значение гистонов. Структура оперона. Роль структурных генов,промотора,оператора,регулятора,факторов транскрипции(индукторов)
- •24.Мультимерная организация белка на примере гемоглобина человека. Серповидно-клеточная анемия.
- •25. Основы генетической уникальности индивидуума (иммуногенетика). Генетический комплекс гистосовместимости человека (hla). Его значение в трансплантологии.
- •28.Классификация генов: гены структурные, регуляторы. Свойства генов (дискретность, стабильность, лабильность, полиаллелизм, специфичность, плейотропия).
- •30. Гаметогенез и мейоз: цитологическая и цитогенетическая характеристика. Биологическое значение мейоза. Сходства и отличия мейоза и митоза.
- •31.Отличие овогенеза от сперматогенеза. Морфология семенников и яичников.
- •36. Проблема трансплантации органов и тканей. Ауто-, алло- и гетеротрансплантация. Трансплантация жизненно важных органов. Тканевая несовместимость и пути её преодоления. Искусственные органы.
- •37.Онтогенез и его периодизация. Прямое и непрямое развитие.
- •2.Зрелость
- •3.Старость
- •38.Общие закономерности онтогенеза многоклеточных. Реализация наследственной информации в становлении фенотипа.
- •39. Эмбриональная индукция. Дифференциация и интеграция в развитии. Молекулярно-генетические механизмы дифференцировки.
- •41.Постнатальный онтогенез и его периоды. Роль эндокринных желез (щитовидной, гипофиза, половых) в регуляции жизнедеятельности организма в постнатальном периоде.
- •42. Роль наследственности и среды в онтогенезе. Способы их оценки. Близнецовый метод. Коэффициент наследственности. Критические периоды развития. Тератогенные факторы среды.
- •43.Биологические ритмы. Классификация. Параметры ритма. Значение биологических ритмов для медицины. Хрономедицина, хронодиагностика и хронотерапия.
- •44. Биоритмы. Регуляция циркадианных систем. Роль эпифиза и схя всинхронизации биоритмов. Биоритмы и алкоголь. Теория и практика.
- •45. Фотопериодизм. Эволюционные аспекты фотопериодизма. Значение света, темноты, их продолжительности и чередования фаз для жизнедеятельности.
- •46.Биоритмы и возраст. Хронобиологическая трактовка тезиса “Старость и болезнь-это стесненная в своей свободе жизнь ”
- •48.Биологический возраст. Его маркеры. Хронобиологическая концепция определения биологического возраста.
- •49.Видовая продолжительность жизни человека. Клиническая и биологическая смерть. Реанимация.
- •50. Гипотеза «волчка». Гетерохронность, гетеротопность, гетерокатефтентность процессов старения.
31.Отличие овогенеза от сперматогенеза. Морфология семенников и яичников.
Отличия:
1. При овогенезе стадия размножения начинается и заканчивается в эмбриональном периоде, при сперматогенезе - после полового созревания.
2. При овогенезе стадия роста начинается в эмбриональном периоде и включает стадию малого и стадию большого роста, при сперматогенезе стадия роста не разделяется на большой и малый рост и протекает в половозрелом организме.
3. При овогенезе 1-е деление созревания происходит в зрелом фолликуле яичника, 2-е деление - в маточной трубе. При сперматогенезе оба деления созревания происходят в извитых семенных канальцах семенника
4. Овогенез включает 3 стадии (отсутствует стадия формирования). Сперматогенез складывается из 4-х стадий.
5. В результате овогенеза из одного овоцита 1-го порядка образуется одна зрелая яйцеклетка и 3 направительных тельца (первое направительное тельце может разделиться на 2 новых тельца). При сперматогенезе из одного сперматоцита 1-го порядка образуется 4 сперматозоида.
Морфология:
Семенники – мужские парные половые железы, в которых вырабатываются половые продукты и половые гормоны. По своему строению семенники различны у разных животных. У низших позвоночных (рыбы) семенники расположены в полости тела. У плацентарных млекопитающих они вынесены за пределы полости тела и располагаются в особом органе – мошонке в связи с высокой температурой тела. Каждый семенник подвешен на семенном канатике; с ним тесно связан придаток семенника. Снаружи семенник покрыт плотной и упругой соединительнотканной капсулой, называемой белочной оболочкой. На задней поверхности семенника белочная оболочка образует утолщение, которое носит название средостения яичка. От средостения отходят радиально внутрь плотные соединительнотканные перегородки, делящие паренхиму семенника на конические дольки. Каждая долька содержит семенные канальцы, промежутки между которыми заполнены соединительной тканью. Семенной каналец состоит из длинной извитой части, где происходит сперматогенез, и короткой прямой части, ведущей к средостению и соединяющийся там с соединяющимися друг с другом канальцами сети семенника. Стенки извитой части семенных канальцев содержат расположенные в несколько рядов мужские половые клетки на разных стадиях сперматогенеза, а также так называемые сертолиевые клетки, обеспечивающие питание половых клеток. По мере развития половые клетки продвигаются от наружной поверхности семенных канальцев к их просвету.
Яичник у большинства животных представляет собой парную половую железу, в которой развиваются яйцеклетки. У птиц яичник непарный, что связано с приспособлением к полету. У некоторых животных он располагается в полости тела (рыбы), у млекопитающих и человека в полости малого таза. Строение яичника состоит из соединительнотканной основы – стромы. В ней различают внутреннюю – мозговую часть, и наружный – корковый слой. Снаружи железа покрыта однослойным зачатковым эпителием. В процессе развития яичника в корковом веществе обособляются группы первичных половых клеток, которые заключены в пфлюгеровские мешки. Мешок образован плоскими фолликулярными клетками и содержит внутри несколько делящихся оогоний. К рождению девочки оогонии делиться прекращают и превращаются в ооциты. Ооциты выходят из мешков и лежат в строме яичника. У новорожденной девочки в яичниках содержится от 50 до 100 тыс. ооцитов, но превращаются в зрелые половые клетки около 500 штук. Ооциты окружаются плоскими фолликулярными клетками и образуют первичный фолликул. С наступлением половой зрелости первичные фолликулы превращаются в граафовы пузырьки. Плоские фолликулярные клетки, окружающие ооцит, сначала превращаются в кубические, затем в высокопризматические. За счет размножения фолликулярных клеток однослойный эпителий превращается в многослойный и образуется вторичный или растущий фолликул. В это время ооцит окружается блестящей оболочкой и сильно увеличивается в размерах. Фолликулярный эпителий также разрастается, за счет чего фолликул значительно увеличивается в объеме. Затем в некоторых местах происходит растворение фолликулярных клеток и в оболочке образуются полости. В последующем они сливаются в общую полость, заполненную фолликулярной жидкостью. Таким образом, компактный фолликул превращается в граафов пузырек. Стенка пузырька многослойна, там, где расположено яйцо, образуется яйценосный бугорок (утолщение стенки пузырька).С поверхности пузырек покрыт соединительнотканной оболочкой – текой. Ооцит окружен фолликулярными клетками, которые образуют лучистый венец.
№32 Характеристика основных этапов оплодотворения. Биологическое значение оплодотворения. Половой диморфизм. Партеногенез
Оплодотворение - процесс слияния мужской и женской гамет, приводящее к образованию зиготы. При оплодотворении взаимодействуют мужская и женская гаплоидные гаметы, при этом сливаются их ядра (пронуклеусы), объединяются хромосомы, и возникает первая диплоидная клетка нового организма - зигота. Начало оплодотворения - момент слияния мембран сперматозоида и яйцеклетки, окончание оплодотворения - момент объединения материала мужского и женского пронуклеусов.
Оплодотворение происходит в дистальном отделе маточной трубы и проходит 3 стадии.
I стадия - дистантное взаимодействие, включает в себя 3 механизма:
хемотаксис - направленное движение сперматозидов навстречу к яйцеклетке (гинигамоны 1,2);
реотаксис - движение сперматозоидов в половых путях против тока жидкости;
капацитация - усиление двигательной активности сперматозоидов, под воздействием факторов женского организма (рН, слизь и другие).
II стадия - контактное взаимодействие, за 1,5-2 ч сперматозоиды приближаются к яйцеклетке, окружают ее и приводят к вращательным движениям, со скоростью 4 оборота в минуту. Одновременно из акросомы сперматозоидов выделяются сперматозилины, которые разрыхляют оболочки яйцеклетки. В том месте, где оболочка яйцеклетки истончается максимально, происходит оплодотворение, оволемма выпячивается и головка сперматозоида проникает в цитоплазму яйцеклетки, занося с собой центриоли, но оставляя снаружи хвостик.
III стадия - проникновение, самый активный сперматозоид проникает головкой в яйцеклетку, сразу после этого в цитоплазме яйцеклетки образуется оболочка оплодотворения, которая препятствует полиспермии. Затем происходит слияние мужского и женского пронуклеусов, этот процесс носит название синкарион. Этот процесс (сингамия) и есть собственно оплодотворение, появляется диплоидная зигота (новый организм, пока одноклеточный).
Биологическое значение оплодотворения состоит в том, что при слиянии мужских и женских половых клеток, происходящих обычно из разных организмов, образуется новый организм, несущий признаки отца и матери. При образовании половых клеток в мейозе возникают гаметы с разным сочетанием хромосом, поэтому после оплодотворения новые организмы могут сочетать в себе признаки обоих родителей в самых различных комбинациях. В результате этого происходит колоссальное увеличение наследственного разнообразия организмов
Под половым диморфизмом понимают подразделение людей на лиц женского и мужского пола (мужчин и женщин). Наличие в природе полового диморфизма вообще отражает различия в задачах, решаемых в процессе полового размножения мужской и женской особью. У человека с появлением культуры половой диморфизм стал проявляться и в разделении труда, или вернее экологических функций в популяции (добывание пищи, рождение и воспитание потомства, приготовление пищи, постройка жилья и так далее). В силу биологических особенностей мужчина был более приобщен к поддержанию эколого-экономического благополучия семьи и общины. Женщине достался примат воспроизводства популяции, отсюда её ведущая роль в биологическом существовании человека. Лишь в последнее время возникли тенденции стирания социальных (но не биологических) различий между мужчиной и женщиной.
На организменном уровне половой диморфизм проявляется в половых признаках. Выделяют первичные половые признаки и вторичные. К первичным половым признакам относят внутренние половые органы (половые железы (семенники и яичники) вместе с проводящими путями (семяпроводы и яйцепроводы), маткой) и внешние половые органы. Формирование половых морфологических и функциональных половых признаков определяется наличием в кариотипе данной особи в 23 паре хромосом X - или У-хромосомы. Особи, имеющие кариотип ХУ, развиваются по мужскому типу и у них формируются мужские половые признаки. Особи, имеющие кариотип XX, развиваются по женскому типу.
Партеногенез – развитие организма из неоплодотворенных яйцевых клеток. Естественный партеногенез существует у ряда растений, червей, насекомых, ракообразных.
Партеногенез - одна из форм полового размножения организмов, при которой женские половые клетки (яйцеклетки) развиваются во взрослый организм без оплодотворения. Хотя партеногенетическое размножение не предусматривает слияния мужских и женских гамет, партеногенез все равно считается половым размножением, так как организм развивается из половой клетки. Считается, что партеногенез возник в процессе эволюции у раздельнополых форм.
33. Постнатальный онтогенез и его периоды. Роль эндокринных желез: щитовидной, гипофиза, половых в регуляции жизнедеятельности организма в постнатальном онтогенезе. Влияние мелатонина на физиологические процессы.
Постнатальный онтогенез - период развития организма от момента рождения до смерти. периодизация постнатального онтогенеза приводится в соответствии с рекомендациями VIII конференции по проблемам возрастной морфологии, физиологии и биохимии (1965)
возрастные периоды и их характеристика
Новорожденный (1-10 дней); для данного периода характерно вскармливание ребенка молозивом
Грудной возраст (10 дней - 1 год); вскармливание ребенка молоком; интенсивный рост тела (вес увеличивается в три раза, рост - в 1,5); в 0,5 года прорезываются молочные зубы
Раннее детство (1 - 3 года); прорезывание молочных зубов завершается к двум годам
Первое детство (4 - 7 лет); в 6 лет начинают прорезываться первые постоянные зубы
Второе детство (отрочество, 8-12 лет; у девочек 8 - 11 лет); активизируются процессы роста (главным образом, в длину), появляются вторичные половые признаки
Подростковый возраст (13 - 16 лет; у девочек 12 - 15 лет); активное половое созревание, формирование вторичных половых признаков; у мальчиков появляются поллюции и ломается голос, у девочек - начинаются менструации и развиваются молочные железы; у обоих полов отмечается скачкообразное увеличение роста (пубертатный скачок)
Юношеский возраст (17 - 21 год; у девушек 16 - 20 лет); окончание процессов роста и формирования организма
Зрелый возраст (22 - 60 лет; у женщин - 21 - 55 лет); существенных изменений формы и строения тела не происходит
Пожилой возраст (61 - 74 года; у женщин - 56 - 74 года); уменьшение веса и роста вследствие дстрофических и атрофических изменений тканей и органов и снижения в них воды
Старческий возраст (75 - 90 лет); изменения роста, веса и строения тела
Долгожители (свыше 90 лет)
Эндокринные железы играют важную роль в процессе роста и развития организма. Их гормоны участвуют в координации всех физиологических функций, обеспечивают периодичность функциональных процессов организма – биологических ритмов.
Щитовидная железа в онтогенезе начинает развиваться одной из первых. У новорожденного ее масса составляет 1-5 г, максимальная масса (14-15г) наблюдается в 15-16 лет. В постнатальном периоде продукция трийодтиронина и тироксина возрастает, что обеспечивает умственное, физическое и половое развитие. Недостаток продукции этих гормонов (особенно в 3-6 лет) вызывает слабоумие (кретинизм). В период полового созревания происходит подъем активности щитовидной железы, который проявляется в повышении возбудимости нервной системы. Снижение активности железы наблюдается в 21-30 лет.
Мужские половые железы. На 11 – 17 неделях уровень андрогенов у плода мужского пола достигает значений, характерных для взрослого организма. Благодаря этому развитие половых гормонов происходит по мужскому типу. Масса яичка у новорожденного 0,3г. Его гормонально продуцирующая активность снижена. Под влиянием гонадолиберина с 12-13 лет она постепенно возрастает и к 16-17 годам достигает уровня взрослых. Подъем гормонопродуцирующей активности вызывает пубертатный скачок роста, появление вторичных половых признаков, а после 15 лет – активацию сперматогенеза.
Женские половые железы. Начиная с 20 недели внутриутробного развития, в яичнике происходит образование примордиальных фолликулов. К моменту рождения масса яичника составляет 5-6г, у взрослой женщины -6-8г. В течение постнатального онтогенеза в яичнике выделяют три периода активности: нейтральный (от рождения до 6-7 лет), препубертатный (от 8лет до первой менструации), пубертатный (от момента первой менструации до менопаузы). На всех этапах фолликулярные клетки продуцируют эстрогены в разных количествах. Низкий уровень эстрогенов до 8 лет создает возможность дифференцировки гипоталамуса по женскому типу. Продукция эстрогенов в пубертатном периоде уже достаточна для пубертатного скачка (роста скелета, а также для развития вторичных половых признаков). Постепенный рост продукции эстрогенов приводит к менархе и становлению регулярного менструального цикла.
Гипофиз В передней доле гипофиза соматотропоциты вырабатывают соматотропин, активирующий митотическую активность соматических клеток и биосинтез белка; лактотропоциты вырабатывают пролактин, стимулирующий развитие и функции молочных желез и жёлтого тела; гонадотропоциты — фолликулостимулирующий гормон (стимуляция роста фолликулов яичника, регуляция стероидогенеза) и лютеинизирующий гормон (стимуляция овуляции, образования жёлтого тела, регуляция стероидогенеза); тиротропоциты — тиреотропный гормон (стимуляция секреции йодсодержащих гормонов тироцитами); кортикотропоциты — адренокортикотропный гормон (стимуляция секреции кортикостероидов в коре надпочечников). В средней доле гипофиза меланотропоциты вырабатывают меланоцитстимулирующий гормон(регуляция обмена меланина); липотропоциты — липотропин (регуляция жирового обмена). В задней доле гипофиза питуициты активируют вазопрессин и окситоцинв накопительных тельцах. При гипофункции передней доли гипофиза в детстве наблюдается карликовость. При гиперфункции передней доли гипофиза в детстве развивается гигантизм.
34.Эмбрионльная индукция. Дифференциация и интеграция в развитии. Молекулярно-генетические механизмы дифференцировки.
Эмбриональная индукция — взаимодействие между частями развивающегося организма у многоклеточных беспозвоночных и всех хордовых.
Например: Если удалить зрительный пузырек, тохрусталик не образуется; если зрительный пузырек имплантировать под эпидермис в какой-либо другой части тела, даже в туловище, в этом месте индуцируется хрусталик.
Дифференцировка. Детерминированные клетки постепенно вступают на путь развития (неспециализированные эмбриональные клетки превращаются в дифференцированные клетки организма). Дифференцированные клетки в отличие от детерминированных обладают специальными морфологическими и функциональными организациями. В них происходят строго определенные биохимические реакции и синтез специальных белков.
Клети печени – альбумин.
Клетки эпидермиса кожи – кератин.
Мышцы – актин, миозин, миелин, миоглобин.
Как правило, дифференциация происходит в эмбриональном периоде и приводит к необратимым изменениям полипотентных клеток эмбриона.
1939 год Томас Морган выдвинул гипотезу: « дифференцировка клеток связана с активностью разных генов одного и того же генома». В настоящее время известно, что в дифференцированных клетках работает около 10% генов, а остальные неактивны. В силу этого в разных типах специализированных клеток функционируют свои определенные гены. Специальными опытами по пересадки ядер из клеток кишечника головастика в безъядерную яйцеклетку было доказано, что в дифференцированных клетках сохраняется генетический материал и прекращение функционирования определенных генов обратимо. Из яйца лягушки удаляли ядро, брали ядро из клетки кишечника головастика. Развитие не происходило, иногда эмбриогенез происходил нормально. Строение взрослой лягушки полностью определялось ядром.
На функционирование генов в процессе развития многоклеточного организма оказывают влияние сложные и непрерывные взаимодействия ядра и цитоплазмы и межклеточные взаимодействия.
Регуляция дифференцировки происходит на уровне транскрипции и на уроне трансляции.
Уровни регуляции дифференцировки клеток.
На уровне транскрипции.
- система оперона
-участие белков – гистонов, которые образуют комплекс с ДНК.
Участки ДНК, покрытые гистоном, неспособны к транскрипции, а участки без гистоновых белков транскрибируются. Таким образом, белки участвуют в контроле над считываемыми генами.
Гипотеза дифференциальной активности генов: « Предположение о том, что в разных генах дифференцированных клеток репрессированы (закрыты для считывания) разные участки ДНК и поэтому синтезируются разные виды м-РНК».
На уровне трансляции.
На ранних стадиях эмбрионального развития весь белковый синтез обеспечивается матрицами, созданными в яйцеклетке до оплодотворения под управлением ее генома. Синтез и-РНК не происходит, меняется характер синтеза белка. У разных животных синтез включается по-разному. У амфибий синтез и-РНК после 10 деления, синтез т-РНК на стадии бластулы. У человека синтез и-РНК после 2го деления. Не все молекулы и-РНК, находящиеся в яйцеклетке одновременно используются для синтеза полипептидов, белков. Часть из них некоторое время молчит.
Морфогенез – образование формы, принятие новой формы. Образование формы чаще всего происходит в результате дифференциального роста. В основе морфогенеза лежит организованное движение клеток и групп клеток. В результате перемещения клетки попадают в новую среду. Процесс происходит во времени и пространстве.
Дифференцированные клетки не могут существовать самостоятельно, кооперируются с другими клетками, образуя ткани и органы. В образовании органов важно поведение клеток, которое зависит от клеточных мембран.
Клеточная мембрана играет роль в осуществлении
-клеточных контактов
-адгезии
-агрегации.
Для формирования органа необходимо присутствие в определенном количестве всех клеток, обладающих общим органным свойством.
Смешивали клетки глазных зачатков и хряща. Раковые клетки не способны к сегрегации и неотделимы от нормальных. Остальные клетки подвержены сегрегации
35. Понятие о гомеостазе-гомеокинезе. Общие закономерности гомеостаза живых систем. Генетические, клеточные и системные основы гомеостатических реакций организма. Роль эндокринной, нервной и иммунной систем в обеспечении гомеостаза и адаптивных изменений. Виды гомеостаза.
Гомеостаз – способность сохранять относительное динамическое постоянство внутренней среды. А гомеокинез - это процесс направленный на восстановление этого состояния при его дисбалансе.
Гомеостаз выражается в относительном постоянстве химического состава, осмотического давления, устойчивости основных физиологических функций в организмах растений, животных, человека. Понятие гомеостаза не связано со стабильностью процессов. Гомеостаз выработался в процессе эволюции, наследственно закреплен.
Ну и некоторые закономерности можно вспомнить.
Клеточный уровень: установление гомеостаза клеточной среды обеспечивается мембранными системами, с которыми связаны биоэнергические процессы и регулирование транспорта веществ в клетку и из нее.
Генетический уровень: тут видимо суть в том, что считывание генетической информации должно происходить без ошибок, это и обеспечивает нормальный гомеостаз. Также можно сказать про восстановление генома, репарацию за счет ферментов и т.д.
Системный уровень: обеспечивается взаимодействием важнейших регуляторных систем: нервной, эндокринной и иммунной.
Роль эндокринной: гормоны оказывают влияние на обменные процессы, обеспечивающие гомеостаз. Для сохранения гомеостаза необходимо уравновешение функциональной активности железы с концентрацией гормона, находящегося в циркулирующей крови.
Роль нервной: быстрое наступление ответной реакции, как вариант, регуляция работы эндокринной системы, которая, в свою очередь, влияет на гомеостаз.
Гомеорез – стабилизированный гомеостаз, если я правильно понял.
Гомеоклаз – гомеостаз при старении.
