- •1.Определения биологии как науки. Связь биологии с другими науками. Значение биологии для медицины.
- •5. Клеточная теория. Значение теории в обосновании диалетико-материалистической концепции единства жизни.
- •6. Клетка как открытая система. Организация потоков вещества, энергии в клетке.
- •7. Энергообразующие системы клетки и их характеристики. Фазы диссимиляции у гетеротрофов.
- •8.Ассимиляция в гетеротрофной клетке. Её фазы.Сущность
- •9. Гликолиз и тканевое дыхание. Сущность, биологическое значение. Энергообразующие системы клетки. Окислительное фосфорилирование. Роль.
- •11.Гипотезы происхождения эукариотических клеток (симбиотическая и инвагинационная).
- •12. Клеточный цикл. Его периодизация. Митотический цикл и его механизмы. Проблемы клеточной пролиферации в медицине.
- •13. Физиологическая и репаративная регенерация. Биологическое и медицинское значениепроблем регенерации.
- •14. Временная организация клетки. Клеточный и митотический цикл. Строение хромосом и динамика её структур в клеточном цикле. Гетеро- и эухроматин.
- •15. Строение днк. Модель днк Уотсона-Крика. Нуклеотиды, участки с уникальными и повторяющимися последовательностями нуклеотидов, их функциональное значение.
- •16. Основные требования, предъявляемые к материальному субстрату, ответственному за наследственность. Реализация наследственной информации.
- •17 Этапы синтеза белка (экспрессия гена). Пути транспорта синтезированного белка в клетке и за её пределами.
- •18.Линейное расположение генов в хромосомах. Сцепление генов. Кроссинговер.
- •20. Кодирование и реализация биологической информации в клетке. Кодовая система днк и белка. Экспериментальное обоснование триплетного кода в опытах Ниринберга.
- •21. Экспериментальные доказательства роли днк в передаче наследственной информации в клетке.
- •22.Этапы экспрессии генов в процессе биосинтеза белка. Альтернативный сплайсинг. Регуляция этапов транскрипции и трансляции. Роль микро-рнк. Геном человека.
- •23.Регуляция работы генов. Значение гистонов. Структура оперона. Роль структурных генов,промотора,оператора,регулятора,факторов транскрипции(индукторов)
- •24.Мультимерная организация белка на примере гемоглобина человека. Серповидно-клеточная анемия.
- •25. Основы генетической уникальности индивидуума (иммуногенетика). Генетический комплекс гистосовместимости человека (hla). Его значение в трансплантологии.
- •28.Классификация генов: гены структурные, регуляторы. Свойства генов (дискретность, стабильность, лабильность, полиаллелизм, специфичность, плейотропия).
- •30. Гаметогенез и мейоз: цитологическая и цитогенетическая характеристика. Биологическое значение мейоза. Сходства и отличия мейоза и митоза.
- •31.Отличие овогенеза от сперматогенеза. Морфология семенников и яичников.
- •36. Проблема трансплантации органов и тканей. Ауто-, алло- и гетеротрансплантация. Трансплантация жизненно важных органов. Тканевая несовместимость и пути её преодоления. Искусственные органы.
- •37.Онтогенез и его периодизация. Прямое и непрямое развитие.
- •2.Зрелость
- •3.Старость
- •38.Общие закономерности онтогенеза многоклеточных. Реализация наследственной информации в становлении фенотипа.
- •39. Эмбриональная индукция. Дифференциация и интеграция в развитии. Молекулярно-генетические механизмы дифференцировки.
- •41.Постнатальный онтогенез и его периоды. Роль эндокринных желез (щитовидной, гипофиза, половых) в регуляции жизнедеятельности организма в постнатальном периоде.
- •42. Роль наследственности и среды в онтогенезе. Способы их оценки. Близнецовый метод. Коэффициент наследственности. Критические периоды развития. Тератогенные факторы среды.
- •43.Биологические ритмы. Классификация. Параметры ритма. Значение биологических ритмов для медицины. Хрономедицина, хронодиагностика и хронотерапия.
- •44. Биоритмы. Регуляция циркадианных систем. Роль эпифиза и схя всинхронизации биоритмов. Биоритмы и алкоголь. Теория и практика.
- •45. Фотопериодизм. Эволюционные аспекты фотопериодизма. Значение света, темноты, их продолжительности и чередования фаз для жизнедеятельности.
- •46.Биоритмы и возраст. Хронобиологическая трактовка тезиса “Старость и болезнь-это стесненная в своей свободе жизнь ”
- •48.Биологический возраст. Его маркеры. Хронобиологическая концепция определения биологического возраста.
- •49.Видовая продолжительность жизни человека. Клиническая и биологическая смерть. Реанимация.
- •50. Гипотеза «волчка». Гетерохронность, гетеротопность, гетерокатефтентность процессов старения.
21. Экспериментальные доказательства роли днк в передаче наследственной информации в клетке.
Опыты Херши и Чейза - белок фага метили радиоактивной серой, а ДНК радиоактивным фосфором, вновь образовавшиеся фаги содержали только радиоактивный фосфор. Опыты показали, что генетическая информация от внедрившегося фага его потомкам передается только проникающей в клетку нуклеиновой кислотой, а не белком, содержащимся в капсуле вируса. Вирусы, поражающие бактериальные клетки - бактериофаги.
Опыты Гриффитса. Он работал с двумя штаммами пневмококков. Штамм S имеет капсульную оболочку и вирулентен. При введении его мышам они погибали. Клетки штамма R не имели капсульных оболочек, гибели мышей не наступало. Клетки вирулентного штамма подвергали действию высоких температур, они не вызывали заболевания. При введении мышам смеси из невирулентного и убитого нагреванием вирулентного штаммов мыши заболели и погибли. Из крови мышей выделены живые S пневмококки. Произошла трансформация штамма R в штамм S. Трансформация - включение чужеродной ДНК в бактериальную клетку. Это перенос наследственной информации от одной клетки прокариотов к другой посредством ДНК бактерии донора или клетки донора. Поскольку клетки вирулентного штамма были убиты нагреванием, значит фактором, вызывающим трансформацию, было вещество небелковой природы. Если ДНК бактерий доноров разрушалась ферментом дезоксирибонуклазой, то трансформации не происходило. Это доказывает, что трансформация вызвана ДНК.
Хайнц Френкель-Конрад исследовал роль структурных компонентов вирусов в вирусной репликации. Чистая нуклеиновая кислота вируса табачной мозаики может заразить растение, вызывая типичную картину заболевания. Более того удалось искусственно создать вегетативные гибриды из вирусов, в которых белковый футляр принадлежал одному виду, а нуклеиновая кислота – другому. Генетическая информация гибридов всегда соответствовала тому вирусу, чья нуклеиновая кислота входила в состав гибрида. Б1Н1 (здоровый)→Б1Н2 (гибрид)→Б2Н2 (больной)
Трансдукция/перемещение - заключается в том, что вирусы, покидая бактериальные клетки, в которых паразитировали, могут захватывать с собой часть их ДНК и, перемещаясь в новые клетки, передают новым хозяевам свойства старых. Это было доказано в опытах по заражению бактерий вирусами.
22.Этапы экспрессии генов в процессе биосинтеза белка. Альтернативный сплайсинг. Регуляция этапов транскрипции и трансляции. Роль микро-рнк. Геном человека.
Экспрессия генов — это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт — РНК или белок.
Основные этапы биосинтеза белков.
1 этап. Транскрипция ДНК. На транскрибируемой цепи ДНК с помощью ДНК-зависимой РНК-полимеразы достраивается комплементарнаяцепь мРНК. Молекула мРНК является точной копией нетранскрибируемой цепи ДНК с той разницей, что вместо дезоксирибонуклеотидов в ее состав входят рибонуклеотиды, в состав которых вместо тимина входит урацил.
2 этап. Процессинг (созревание) мРНК. Синтезированная молекула мРНК (первичный транскрипт) подвергается дополнительным превращениям. В большинстве случаев исходная молекула мРНК разрезается на отдельные фрагменты. Одни фрагменты – интроны – расщепляются до нуклеотидов, а другие – экзоны – сшиваются в зрелую мРНК. Процесс соединения экзонов «без узелков» называетсясплайсинг.
3 этап. Трансляция мРНК. Трансляция (как и все матричные процессы) включает три стадии: инициацию (начало), элонгацию(продолжение) и терминацию (окончание).
Инициация. Сущность инициации заключается в образовании пептидной связи между двумя первыми аминокислотами полипептида.
Элонгация. Сущность элонгации заключается в присоединении последующих аминокислот, то есть в наращивании полипептидной цепи. Рабочий цикл рибосомы в процессе элонгации состоит из трех шагов: кодонзависимого связывания мРНК и аминоацил-тРНК на А–участке, образования пептидной связи между аминокислотой и растущей полипептидной цепью и транслокации с освобождением А–участка.
Терминация. Заключается в окончании синтеза полипептидной цепи.
В конце концов, рибосома достигает такого кодона мРНК, которому не соответствует ни одна тРНК (и ни одна аминокислота). Существует три таких нонсенс–кодона: УАА («охра»), УАГ («янтарь»), УГА («опал»). На этих кодонах мРНК рабочий цикл рибосомы прерывается, и наращивание полипептида прекращается. Рибосома под воздействием определенных белков вновь разделяется на субъединицы.
Альтернативный сплайсинг — процесс, в ходе которого экзоны, вырезаемые из пре-мРНК, объединяются в различных комбинациях, что порождает различные формы зрелой мРНК. В результате один ген может порождать не одну, а множество форм белка.
Как осуществляется регуляция синтеза отдельных белков, мы рассмотрим на примере относительно просто устроенной бактериальной клетки. Известно, что, пока в питательную среду, в которой живет бактерия, не добавлен сахар, в клетке нет ферментов, необходимых для его расщепления. Бактерия не тратит энергию АТФ на синтез белков, ненужных ей в данный момент. Однако через несколько секунд после добавления сахара в клетке синтезируются все ферменты, последовательно превращающие его в продукт, необходимый для жизнедеятельности бактерий. Вместо сахара может быть другое соединение, появление которого в клетке «включает» синтез ферментов, расщепляющих его до конечного продукта. Соединения, которые в клетке подвергаются действию ферментов, называются субстратами.
Ферменты, участвующие в одной цепи превращения субстрата в конечный продукт, закодированы в расположенных друг за другом генах одного оперона. Между этими генами, называемыми структурными (так как они определяют структуру ферментов), и промотором — посадочной площадкой для РНК-полимеразы есть особый участок ДНК — оператор. Он так называется потому, что именно с него начинается операция — синтез иРНК. С оператором взаимодействует специальный белок — репрессор. Пока репрессор «сидит» на операторе, полимераза не может сдвинуться с места и начать синтез иРНК (рис. 25).
Рис. 25. Схема регуляции транскрипции и трансляции у бактерий. РНК-пол — РНК-полимераза; Р1 и Р2 — разные белки-репрессоры; Ф1, Ф2, ФЗ — ферменты
Когда в клетку попадает субстрат А, для расщепления которого нужны ферменты Ф-1, Ф-2, Ф-3, закодированные в структурных генах оперона А, одна из молекул субстрата связывается с репрессором, мешающим считывать информацию об этих ферментах. Репрессор, связанный молекулой субстрата, теряет способность взаимодействовать с оператором, отходит от него и освобождает дорогу РНК-полимеразе. Полимераза синтезирует иРНК, которая обеспечивает на рибосомах синтез ферментов, расщепляющих субстрат А. Как только последняя молекула субстрата А будет преобразована в конечный продукт, освобожденный репрессор возвратится на оператор и закроет путь полимеразе. Транскрипция и трансляция прекращаются; иРНК и ферменты, выполнив свои функции, расщепляются соответственно до нуклеотидов и аминокислот.
Другой оперон, содержащий группу генов, в которых закодированы ферменты для расщепления субстрата Б, остается закрытым до поступления в клетку молекул этого субстрата (рис. 25). В ряде случаев конечные продукты одних цепей превращений могут служить субстратами для новых биохимических конвейеров. Не каждый оперон имеет несколько структурных генов, есть опероны, содержащие лишь один ген. Количество структурных генов в опероне зависит от сложности биохимических превращений того или иного субстрата.
Ми́кроРНК — малые некодирующие молекулы РНК длиной 18—25 нуклеотидов (в среднем 22), обнаруженные у растений, животныхи некоторых вирусов, принимающие участие в транскрипционной и посттранскипционной регуляции экспрессии генов. МикроРНК играют важную роль в регуляции экспрессии генов. МикроРНК комплементарны определённому фрагменту на одной или нескольких мРНК. МикроРНК животных обычно комплементарны 3’-UTR, в то время как микроРНК растений, как правило, комплементарны кодирующей части мРНК. Полное или почти полное спаривание оснований между микроРНК и мРНК-мишенью запускает разрушение мишени.
Геном человека — совокупность наследственного материала, заключенного в клетке человека. Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две пары аутосом, двеполовые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований.
В ходе выполнения проекта «Геном человека» была определена последовательность ДНК всех хромосом и митохондриальной ДНК. В настоящее время эти данные активно используются по всему миру в биомедицинских исследованиях.
