- •1.Определения биологии как науки. Связь биологии с другими науками. Значение биологии для медицины.
- •5. Клеточная теория. Значение теории в обосновании диалетико-материалистической концепции единства жизни.
- •6. Клетка как открытая система. Организация потоков вещества, энергии в клетке.
- •7. Энергообразующие системы клетки и их характеристики. Фазы диссимиляции у гетеротрофов.
- •8.Ассимиляция в гетеротрофной клетке. Её фазы.Сущность
- •9. Гликолиз и тканевое дыхание. Сущность, биологическое значение. Энергообразующие системы клетки. Окислительное фосфорилирование. Роль.
- •11.Гипотезы происхождения эукариотических клеток (симбиотическая и инвагинационная).
- •12. Клеточный цикл. Его периодизация. Митотический цикл и его механизмы. Проблемы клеточной пролиферации в медицине.
- •13. Физиологическая и репаративная регенерация. Биологическое и медицинское значениепроблем регенерации.
- •14. Временная организация клетки. Клеточный и митотический цикл. Строение хромосом и динамика её структур в клеточном цикле. Гетеро- и эухроматин.
- •15. Строение днк. Модель днк Уотсона-Крика. Нуклеотиды, участки с уникальными и повторяющимися последовательностями нуклеотидов, их функциональное значение.
- •16. Основные требования, предъявляемые к материальному субстрату, ответственному за наследственность. Реализация наследственной информации.
- •17 Этапы синтеза белка (экспрессия гена). Пути транспорта синтезированного белка в клетке и за её пределами.
- •18.Линейное расположение генов в хромосомах. Сцепление генов. Кроссинговер.
- •20. Кодирование и реализация биологической информации в клетке. Кодовая система днк и белка. Экспериментальное обоснование триплетного кода в опытах Ниринберга.
- •21. Экспериментальные доказательства роли днк в передаче наследственной информации в клетке.
- •22.Этапы экспрессии генов в процессе биосинтеза белка. Альтернативный сплайсинг. Регуляция этапов транскрипции и трансляции. Роль микро-рнк. Геном человека.
- •23.Регуляция работы генов. Значение гистонов. Структура оперона. Роль структурных генов,промотора,оператора,регулятора,факторов транскрипции(индукторов)
- •24.Мультимерная организация белка на примере гемоглобина человека. Серповидно-клеточная анемия.
- •25. Основы генетической уникальности индивидуума (иммуногенетика). Генетический комплекс гистосовместимости человека (hla). Его значение в трансплантологии.
- •28.Классификация генов: гены структурные, регуляторы. Свойства генов (дискретность, стабильность, лабильность, полиаллелизм, специфичность, плейотропия).
- •30. Гаметогенез и мейоз: цитологическая и цитогенетическая характеристика. Биологическое значение мейоза. Сходства и отличия мейоза и митоза.
- •31.Отличие овогенеза от сперматогенеза. Морфология семенников и яичников.
- •36. Проблема трансплантации органов и тканей. Ауто-, алло- и гетеротрансплантация. Трансплантация жизненно важных органов. Тканевая несовместимость и пути её преодоления. Искусственные органы.
- •37.Онтогенез и его периодизация. Прямое и непрямое развитие.
- •2.Зрелость
- •3.Старость
- •38.Общие закономерности онтогенеза многоклеточных. Реализация наследственной информации в становлении фенотипа.
- •39. Эмбриональная индукция. Дифференциация и интеграция в развитии. Молекулярно-генетические механизмы дифференцировки.
- •41.Постнатальный онтогенез и его периоды. Роль эндокринных желез (щитовидной, гипофиза, половых) в регуляции жизнедеятельности организма в постнатальном периоде.
- •42. Роль наследственности и среды в онтогенезе. Способы их оценки. Близнецовый метод. Коэффициент наследственности. Критические периоды развития. Тератогенные факторы среды.
- •43.Биологические ритмы. Классификация. Параметры ритма. Значение биологических ритмов для медицины. Хрономедицина, хронодиагностика и хронотерапия.
- •44. Биоритмы. Регуляция циркадианных систем. Роль эпифиза и схя всинхронизации биоритмов. Биоритмы и алкоголь. Теория и практика.
- •45. Фотопериодизм. Эволюционные аспекты фотопериодизма. Значение света, темноты, их продолжительности и чередования фаз для жизнедеятельности.
- •46.Биоритмы и возраст. Хронобиологическая трактовка тезиса “Старость и болезнь-это стесненная в своей свободе жизнь ”
- •48.Биологический возраст. Его маркеры. Хронобиологическая концепция определения биологического возраста.
- •49.Видовая продолжительность жизни человека. Клиническая и биологическая смерть. Реанимация.
- •50. Гипотеза «волчка». Гетерохронность, гетеротопность, гетерокатефтентность процессов старения.
20. Кодирование и реализация биологической информации в клетке. Кодовая система днк и белка. Экспериментальное обоснование триплетного кода в опытах Ниринберга.
Первично все многообразие жизни обусловливается разнообразием белковых молекул, выполняющих в клетках различные биологические функции. Структура белков определяется набором и порядком расположения аминокислот в их пептидных цепях. Именно эта последовательность аминокислот в пептидных цепях зашифрована в молекулах ДНК с помощью биологического (генетического) кода. Для шифровки 20 различных аминокислот достаточное количество сочетаний нуклеотидов может обеспечить лишь триплетный код, в котором каждая аминокислота шифруется тремя стоящими рядом нуклеотидами.
Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательного расположения нуклеотидов в и-РНК.
Св-ва ген. кода:
Код триплетен. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, называется триплетом или кодоном.
Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (исключение метиотин и триптофан)
Код однозначен – каждый кодон шифрует только 1 аминоксилоту
Между генами имеются «знаки препинания» (УАА,УАГ,УГА) каждый из которых означает прекращение синтеза и стоит в конце каждого гена.
Внутри гена нет знаков препинания.
Код универсален. Генетический код един для всех живых на земле существ.
Транскрипция – это процесс считывания информации РНК, осуществляемой и-РНК полимеразой. ДНК – носитель всей генетической информации в клетке, непосредственного участия в синтезе белков не принимает. К рибосомам – местам сборки белков – высылается из ядра несущий информационный посредник, способный пройти поры ядерной мембраны. Им является и-РНК. По принципу комплементарности она считывает с ДНК при участии фермента называемого РНК – полимеразой. В процессе транскрипции можно выделить 4 стадии:
Связывание РНК-полимеразы с промотором,
инициация – начало синтеза. Оно заключается в образовании первой фосфодиэфирной связи между АТФ и ГТФ и два нуклеотидом синтезирующей молекулы и-РНК,
элонгация – рост цепи РНК, т.е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды в транскрибируемой ните ДНК,
Терминация – завершения синтеза и-РНК. Промотр – площадка для РНК-полимеразы. Оперон – часть одного гена ДНК.
ДНК (дезоксирибонуклеиновая кислота) – биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин (А) или тимин (Т), цитозин (Ц) или гуанин (Г), пятиатомный сахар пентозу – дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов.
Структура каждой молекулы ДНК индивидуальна и специфична, так как представляет собой кодовую форму записи биологической информации. С помощью 4 нуклеотидов в ДНК записана вся важная информация об организме, передающаяся по наследству.
Опыт Ниринберга.
Он создал искусственную и-РНК и поместил ее в бесклеточную среду, содержащую аминокислоты, РНК, все необходимое для синтеза белка. В результате многочисленных опытов он заметил что происходил синтез только фенилаланина, что соответствовало триплету УУУ. Так открыт первый триплет.
