Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Задания ТОЭ.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
9.5 Mб
Скачать

3. Трехфазные цепи, периодические несинусоидальные токи, электрические фильтры

3.1. Контрольное задание 1

Задача. Задана схема трехфазной цепи. Она содержит трехфазный генератор (создающий трехфазную симметричную синусоидальную систему ЭДС) и симметричную нагрузку. Известны действующее значение ЭДС фазы генератора EA, период T, параметры R1, R2,L, C1 и C2 для заданной схемы. Начальную фазу ЭДС eA принять нулевой. Требуется: определить мгновенное значение напряжения между заданными точками и подсчитать активную мощность трехфазной системы.

Указания: 1. Сопротивления обмоток генератора полагать равными нулю.

2. Для вариантов, в которых нагрузка соединена треугольником, рекомендуется при расчете преобразовать ее в соединение звездой.

3. При расчете символическим методом рекомендуется оперировать с комплексами действующих значений (не с комплексными амплитудами).

3.3. Контрольное задание 2

Задача. Задана схема, на вход которой воздействует периодическое напряжение u(t). Схема нагружена на активное сопротивление нагрузки RH.

Численные значения напряжения Um, периода T, параметров схемы L, C и величины активного сопротивления нагрузки Rн заданы. Требуется:

1. Разложить напряжение u1(t) в ряд Фурье до пятой гармоники включительно, используя табличные разложения, приведенные в учебниках.

2. Обозначив сопротивления элементов схемы в общем виде как Rн, jXL и - jXС, вывести формулу для комплексной амплитуды напряжения на нагрузке U2m через комплексную амплитуду входного напряжения U1m. Полученное выражение пригодно для каждой гармоники, только под XL и XС следует понимать сопротивления соответствующей гармоники.

3. Используя формулу п. 2, определить комплексную амплитуду напряжения на выходе для заданных гармоник ряда Фурье.

4. Записать мгновенное значение напряжения на нагрузке u2 = f(ωt) в виде ряда Фурье.

4. Переходные процессы в линейных электрических цепях

4.1. Контрольное задание 1

Задача. Дана электрическая цепь, в которой происходит коммутация. Требуется определить закон изменения во времени тока после коммутации в одной из ветвей схемы или напряжение на каком-либо элементе или между заданными точками схемы.

Задачу следует решать двумя методами: классическим и операторным. На основании полученного аналитического выражения требуется построить график изменения искомой величины в функции времени в интервале от t = 0 до t = 3/ p min , где p min – меньший по модулю корень характеристического уравнения.

4.3. Контрольное задание 2

Задача. Дана электрическая схема, на входе которой действует напряжение, изменяющееся во времени по заданному закону u1(t). Требуется определить закон изменения во времени тока в одной из ветвей схемы или напряжения на заданном участке схемы.

Задачу требуется решить с помощью интеграла Дюамеля. Искомую величину следует определить (записать ее аналитическое выражение) для всех интервалов времени.

В каждом ответе следует выполнить приведение подобных членов относительно , , t и выделить постоянную составляющую.

5. Построить друг под другом линейчатые спектры входного u1 и выходного u2 напряжений.