- •Тема 1.1. Структурная организация белков. Этапы формирования нативной
- •Тема 1.2. Основы функционирования белков. Лекарства как лиганды, влияющие на функцию белков
- •Тема 1.3. Денатурация белков и возможность их спонтанной ренативации
- •Тема 1.4. Особенности строения и функционирования олигомерных белков на примере гемоглобина
- •2. Формирование пространственных структур и функционирование миоглобина.
- •Тема 1.5. Поддержание нативной конформации белков в условиях клетки
- •1. Молекулярные шапероны и их роль в предотвращении денатурации белков.
- •Тема 1.6. Многообразие белков. Семейства белков на примере иммуноглобулинов
- •Тема 1.7. Физико-химические свойства белков и методы их разделения
- •Тема 2.1. Свойства ферментов как белковых
- •2. Для ферментов характерны:
- •Тема 2.2. Активный центр: специфичность действия ферментов
- •Тема 2.3. Механизм действия ферментов
- •Тема 2.4. Кофакторы и коферменты
- •Тема 2.5. Классификация и номенклатура
- •Тема 2.6. Основы кинетики ферментативного
- •Тема 2.7. Ингибиторы активности ферментов
- •Тема 2.8. Регуляция активности ферментов
- •Тема 2.9. Применение ферментов в медицине
- •Тема 2.10. Энзимопатии
- •Тема 3.1. Строение и функции днк и рнк
- •Тема 3.2. Биосинтез днк (репликация)
- •I. Формирование репликативной вилки.
- •II. Синтез новых цепей днк.
- •III. Исключение праймеров. Завершение формирования отстающей цепи
- •II. Синтез новых цепей днк
- •III. Исключение праймеров. Завершение формирования отстающей цепи днк
- •Тема 3.3. Репарация ошибок и повреждений днк
- •Тема 3.4. Биосинтез рнк (транскрипция). Посттранскрипционные модификации рнк
- •Тема 3.5. Трансляция как механизм перевода генетической информации в фенотипические
- •Тема 3.6. Ингибиторы матричных биосинтезов: лекарственные препараты, яды и бактериальные токсины
- •Тема 3.7. Механизмы адаптивной регуляции активности генов у прокариотов и эукариотов
- •Тема 3.8. Механизмы, обеспечивающие разнообразие белков у эукариотов
- •Тема 3.9. Механизмы генетической изменчивости: эволюционная изменчивость, полиморфизм белков. Наследственные болезни
- •Тема 3.10. Использование рекомбинантных днк
- •Тема 4.1. Общая характеристика мембран.
- •Тема 4.2. Транспорт веществ через мембраны
- •3. Перенос макромолекул и частиц с участием мембран - эндоцитоз и экзоцитоз.
- •Тема 4.3. Трансмембранная передача сигналов
- •Тема 5.1. Взаимосвязь обмена веществ и энергии
- •Тема 5.2. Тканевое дыхание
- •Тема 5.3. Митохондриальная цепь переноса электронов
- •1. Перенос электронов на кислород происходит при участии системы переносчиков, локализованных во внутренней мембране митохондрий и образующих цепь переноса электронов (цпэ) (рис. 5.6).
- •Тема 5.4. Сопряжение тканевого дыхания и синтеза атф
- •4. Таким образом, трансформация энергии в организме проходит следующие этапы.
- •Тема 5.5. Дыхательный контроль
- •Тема 5.6. Разобщение дыхания и синтеза атф
- •Тема 5.7. Терморегуляторная функция дыхания
- •Тема 5.8. Ингибиторы дыхания
- •Тема 5.9. Заключительный этап катаболизма пищевых веществ. Специфические и общий пути
- •1. Первая реакция опк - реакция окислительного декарбоксилирования пирувата описывается следующим суммарным уравнением (рис. 5.14).
- •2. Ацетил-КоА, образовавшийся в реакции, катализируемой пдк, далее вступает в цитратный цикл (рис. 5.16).
- •Тема 5.10. Анаболические функции общего пути катаболизма (опк)
- •1. Метаболиты опк служат предшественниками в синтезе ряда веществ в организме: аминокислот, глюкозы, жирных кислот и других соединений (рис. 5.19).
- •2. Убыль метаболитов цитратного цикла восполняется с помощью анаплеротических («пополняющих») реакций, главной из которых является реакция карбоксилирования пирувата.
- •Тема 5.11. Регуляция энергетического обмена
- •Тема 5.12. Гипоэнергетические состояния
- •Тема 6.1. Основные углеводы пищи. Строение,
- •1. Основным источником углеводов организма являются углеводы пищи, к которым относится крахмал. Кроме того, в пище содержатся глюкоза, фруктоза, сахароза и лактоза.
- •Тема 6.2. Трансмембранный перенос глюкозы и других моносахаридов из кишечника в кровь и из крови в клетки тканей. Пути превращения
- •Тема 6.3. Синтез гликогена (гликогеногенез), мобилизация гликогена (гликогенолиз). Регуляция процессов
- •5. Регуляция метаболизма гликогена в печени.
- •Тема 6.4. Нарушения переваривания и всасывания углеводов, синтеза и распада гликогена
- •1. Причинами нарушений переваривания углеводов могут быть:
- •Тема 6.5. Катаболизм глюкозы: аэробный и анаэробный гликолиз. Аэробный распад глюкозы до со2 и н2о
- •2. В аэробном и анаэробном гликолизе можно выделить два этапа.
- •Тема 6.6. Биологическое значение катаболизма глюкозы. Регуляция процесса
- •3. Анаболическое значение катаболизма глюкозы.
- •4. Регуляция катаболизма глюкозы в скелетных мышцах. Основное значение гликолиза - синтез атф, поэтому его скорость должна коррелировать с затратами энергии в организме.
- •Тема 6.7. Пентозофосфатный путь превращения
- •Тема 6.8. Синтез глюкозы (глюконеогенез)
- •2. Большинство реакций гликолиза и глюконеогенеза являются обратимыми и катализируются одними и теми же ферментами (рис. 6.20). Четыре реакции глюконеогенеза необратимы.
- •4. Существенное влияние на глюконеогенез оказывает этанол. Метаболизм этанола на 90% происходит в печени.
- •Тема 6.9. Регуляция гликолиза и глюконеогенеза
- •1. Переключение метаболизма печени с гликолиза на глюконеогенез и наоборот происходит при помощи:
- •Тема 6.10. Регуляция содержания глюкозы в крови, гиперглюкоземия
- •Тема 7.1. Коллаген
- •Тема 7.2. Эластин
- •Тема 7.3. Гетерополисахариды межклеточного
- •Тема 7.4. Неколлагеновые структурные белки межклеточного матрикса
- •Тема 7.5. Структурная организация межклеточного матрикса (суставной хрящ, базальные мембраны, субэпителиальные слои)
- •Тема 10.1. Биосинтез и катаболизм пуриновых рибонуклеотидов. Заболевания, связанные с нарушением их метаболизма
- •3. Синтез нуклеозиддифосфатов (ндф) и нуклеозидтрифосфатов (нтф) происходит при участии атф и ферментов нуклеозидмонофосфат- илинуклеозиддифосфаткиназ (нмф- и ндф-киназы соответственно) (рис. 10.3).
- •4. Регуляция процесса. Амф, гмф, имф, ди- и трифосфаты адениловых и гуаниловых нуклеотидов ингибируют ключевые реакции своего синтезааллостерически по механизму отрицательной обратной связи.
- •2. Регуляция процесса. Активность ферментов синтеза пиримидиновых нуклеотидов регулируется аллостерически по механизму отрицательной обратной связи конечными продуктами умф и цтф:
- •Тема 10.3. Биосинтез дезоксирибонуклеотидов.
- •3. Синтез дТмф из дУмф катализирует тимидилатсинтаза с участием n5n10- метилен н4-фолата, за счет которого:
- •4. Количество ферментов рнРазы и тимидилатсинтазы регулируется на
- •5. Небольшое количество дезоксирибонуклеотидов может образовываться по «запасному» пути в реакциях, катализируемых тимидинкиназой и дезоксицитидинкиназой:
- •Тема 10.4. Механизмы действия противовирусных и противоопухолевых препаратов на ферменты синтеза рибо- и дезоксирибонуклеотидов
- •Тема 8.1. Строение и функции основных липидов организма человека
- •Тема 8. 2. Переваривание и всасывание жиров. Ресинтез жиров в клетках слизистой оболочки
- •Тема 8.3. Хиломикроны - транспортная форма экзогенных жиров
- •Тема 8.4. Биосинтез высших жирных кислот и его регуляция
- •2. Первая реакция синтеза жирных кислот - это превращение ацетил-КоА в малонил-КоА:
- •3. Последующие реакции синтеза жирных кислот катализируются ферментным комплексом - синтазой жирных кислот или пальмитатсинтазой. Конечным продуктом синтеза является пальмитиновая кислота.
- •5. Регуляция синтеза жирных кислот.
- •Тема 8.5. Биосинтез жиров в печени и жировой ткани. Регуляция синтеза жиров
- •3. В печени жирные кислоты, необходимые для синтеза жиров, синтезируются в основном из продуктов катаболизма глюкозы. Далее синтез жиров идет через образование фосфатидной кислоты (рис. 8.13).
- •5. Запасание жиров в жировой ткани - так называемое депонирование жиров - происходит в абсорбтивный период, когда увеличивается соотношение инсулин - глюкагон.
- •Тема 8.6. Ожирение
- •2. Первичное ожирение развивается в результате алиментарного дисбаланса - избыточной калорийности питания по сравнению с расходами энергии.
- •Тема 8.7. Мобилизация жира. Гормональная
- •2. Мобилизация жира происходит в основном под действием гормонов глюкагона и адреналина и представляет собой гидролиз жира в адипоцитах до жирных кислот и глицерола ферментом - гормончувствительной
- •Тема 8.8. Β-окисление высших жирных кислот - источник энергии для синтеза атф. Регуляция I -окисления
- •4. Регуляция β-окисления. Скорость процесса β-окисления зависит от ряда факторов:
- •Тема 8.9. Кетоновые тела: синтез и катаболизм.
- •1. К кетоновым телам относят три вещества: β-гидроксибутират, ацетоацетат и ацетон.
- •Тема 8.10. Производные полиеновых кислот - эйкозаноиды: строение, биосинтез и биологическое действие
- •6. Ингибиторами синтеза эйкозаноидов являются:
- •7. Роль эйкозаноидов в регуляции свертывания крови. В норме свертывающая и противосвертывающая системы крови пребывают в состоянии равновесия, при котором кровь находится в жидком состоянии,
- •Тема 8.11. Холестерол, биологические функции. Поступление с пищей и транспорт кровью экзогенного холестерола
- •Тема 8.12. Биосинтез холестерола и его регуляция
- •Тема 8.13. Биосинтез желчных кислот и их роль
- •Тема 8.14. Роль липопротеинов в транспорте
- •Тема 8.15. Типы дислипопротеинемий. Биохимические основы патогенеза и лечения
- •Тема 9.1. Роль белков в питании. Азотистый баланс
- •Тема 9.2. Переваривание белков в желудке и кишечнике, всасывание аминокислот
- •Тема 9.3. Трансаминирование и дезаминирование аминокислот
- •Тема 9.4. Обмен аммиака: источники, превращение в тканях
- •Тема 9.5. Орнитиновый цикл и его биологическая роль
- •Тема 9.6. Гипераммониемия и ее причины
- •Тема 9.7. Пути использования безазотистых остатков аминокислот
- •Тема 9.8. Биосинтез заменимых аминокислот
- •Тема 9.9. Обмен серина и глицина.
- •Тема 9.10. Обмен метионина. Реакции трансметилирования
- •Тема 9.11. Обмен фенилаланина, тирозина и гистидина в разных тканях
- •Тема 9.12. Заболевания, связанные с нарушением обмена фенилаланина и тирозина
- •Тема 9.13. Биогенные амины: синтез, инактивация, биологическая роль
- •Тема 11.1. Роль гомонов в регуляции метаболизма
- •Тема 11.2. Механизмы передачи гормональных сигналов в клетки
- •Тема 11.3. Строение и биосинтез гормонов
- •Тема 11.4. Регуляция обмена основных энергоносителей при нормальном ритме
- •Тема 11.5. Изменения метаболизма при гипо- и гиперсекреции гормонов
- •Тема 11.6. Изменения гормонального статуса и метаболизма при голодании и физической работе
- •Тема 11.7. Изменения гормонального статуса и метаболизма при сахарном диабете
- •Тема 11.8. Регуляция водно-солевого обмена
- •Тема 11.9. Регуляция обмена кальция и фосфатов. Строение, синтез и механизм действия паратгормона, кальцитриола и кальцитонина
- •Тема 12.1. Механизмы обезвреживания токсических веществ
- •Тема 12.2. Обезвреживание продуктов катаболизма аминокислот в кишечнике
- •Тема 12.3. Биотрансформация лекарств
- •Тема 12.4. Метаболизм и обезвреживание
- •Тема 12.5. Химический канцерогенез
- •Тема 13.1. Синтез гема и его регуляция
- •Тема 13.2. Обмен железа
- •Тема 13.3. Катаболизм гема
- •Тема 14.1. Метаболизм эритроцитов
- •Тема 14.2. Особенности метаболизма фагоцитирующих клеток
- •Тема 14.3. Основные биохимические механизмы
- •Тема 14.4. Основные свойства белковых фракций крови и значение их определения для диагностики заболеваний
Тема 9.11. Обмен фенилаланина, тирозина и гистидина в разных тканях
|
1. Фенилаланин - незаменимая аминокислота, так как в клетках животных не синтезируется ароматическое кольцо. Основная часть поступающего с пищей фенилаланина используется в синтезе тканевых белков, превращение остальной части начинается с его гидроксилирования, в результате чего образуется тирозин. Реакция эта катализируется специфической монооксигеназой - фенилаланингидроксилазой, коферментом которой является тетрагидробиоптерин (Н4-БП) (рис. 9.22).
Рис.
9.22. Реакция гидроксилирования фенилаланина
и регенерация тетрагидробиоптерина
(Н4БП):
1. Реакцию катализирует фенилаланингидроксилаза (1), коферментом которой является Н4БП. Кофактором являются ионы Fe2+. Н4БП в результате реакции окисляется в дигидробиоптерин (Н2БП).
2. Регенерация дигидробиоптерина (2) происходит при участии дигидробиоптеринредуктазы с использованием NADPH.
2. Тирозин - условно заменимая аминокислота. Синтезируется только из фенилаланина.
Катаболизм Фен и Тир происходит в печени. В результате ряда реакций образуется фумарат и ацетоацетат (рис. 9.23, А). Фумарат используется для синтеза глюкозы (глюконеогенез) или окисляется до СО2 и Н2О. Ацетоацетат - кетоновое тело, которое окисляется в тканях с выделением энергии. Таким образом, Фен и Тир относятся к смешанным (гликокетогенным) аминокислотам по использованию безазотистого остатка.
Превращение промежуточного продукта катаболизма Тир - гомогентизиновой кислоты - в фумарилацетоацетат сопровождается расщеплением ароматического кольца.
Процессы
расщепления ароматических колец в
биологических системах катализируются
ферментами диоксигеназами. Для
катализа диоксигеназам необходимы кофакторы
- Fe2+ или гем (для
некоторых - Сu+), а также - витамин С.
3. В мозговом веществе надпочечников и нервной ткани из тирозина синтезируются катехоламины (дофамин, норадреналин, адреналин) (рис. 9.23, В).
|
Тирозин под действием специфической монооксигеназы - тирозингидроксилазы превращается в ДОФА. Для протекания реакции необходимы Н4БП, О2 и Fe2+ (реакция аналогична гидроксилированию фенилаланина, см. рис. 9.22). Тирозингидроксилаза найдена только в надпочечниках и катехоламинэргических нейронах (преимущественно в их нервных окончаниях). Этот фермент является регуляторным и определяет скорость синтеза катехоламинов. Одна из функций последних - регуляция деятельности сердечнососудистой системы.
Активность тирозингидроксилазы значительно изменяется в результате:
• аллостерической регуляции по принципу ретроингибирования норадреналином;
• фосфорилирования с участием цАМР - зависимой протеинкиназы, при этом снижается Км для кофермента Н4БП и сродство фермента к норадреналину, в результате чего происходит активация тирозингидроксилазы;
• индукции синтеза фермента кортизолом.
Катехоламины выполняют очень важные функции в организме. Дофамин является медиатором среднего отдела мозга. Норадреналин - тормозный медиатор синаптической нервной системы и разных отделов головного мозга, но может выполнять функцию возбуждающего медиатора в гипоталамусе. Адреналин - гормон интенсивной физической работы, который синтезируется при стрессе и регулирует основной обмен, а также усиливает сокращение сердечной мышцы.
В щитовидной железе тирозин используется для синтеза гормонов иодтиронинов (тироксина и трииодтиронина) (рис. 9.23, Г). Подробно их функции и синтез рассматриваются в модуле 11.
В меланоцитах - пигментных клетках кожи, сетчатки глаз тирозин является предшественником пигментов меланинов (см. рис. 9.23, Б).
4. Частично заменимая аминокислота гистидин синтезируется из глутамата в сложном процессе, поскольку образование гетероциклического радикала в клетках человека и млекопитающих сопряжено с большими трудностями.
|
Рис.
9.23. Пути превращения фенилаланина и
тирозина в разных тканях:
А - катаболизм фенилаланина и тирозина в печени; Б - синтез меланинов в меланоцитах; В - синтез катехоламинов в надпочечниках и нервной ткани; Г - синтез иодтиронинов в щитовидной железе
Обмен гистидина включает синтез гистамина в соединительной ткани, а также путь катаболизма, который происходит в печени и, частично, в коже человека.
В печени и коже дезаминирование гистидина катализирует фермент гистидаза. Образующийся уроканат только в печени способен превращаться через ряд стадий в глутамат. Наследственный дефект гистидазы вызывает
накопление гистидина в организме и развитие гистидинемии, которая проявляется задержкой в умственном и физическом развитии детей. Ферменты гистидаза и уроканиназа (рис. 9.24) являются гепатоспецифическими, поэтому их определение используется в клинике для диагностики поражений печени.
Рис.
9.24. Схема обмена гистидина в разных
тканях:
А - катаболизм гистидина в печени; Б - синтез и инактивация гистамина
7. Гистамин синтезируется путем декарбоксилирования гистидина в тучных клетках соединительной ткани, образует комплекс с белками и сохраняется в секреторных гранулах. Выделяется в кровь при повреждении ткани (удар, ожог, воздействие эндо- и экзогенных веществ). Гистамин выполняет следующие функции:
• стимулирует секрецию желудочного сока, слюны (пищеварительный гормон);
• обеспечивает воспалительную реакцию - расширение сосудов, покраснение кожи, отечность ткани;
• обеспечивает аллергическую реакцию;
• повышает проницаемость капилляров, вызывает отеки, снижает артериальное давление (но увеличивает внутричерепное давление, вызывает головную боль);
• сокращает гладкую мускулатуру легких, вызывает удушье;
|
• выполняет роль нейромедиатора.
