- •Тема 1.1. Структурная организация белков. Этапы формирования нативной
- •Тема 1.2. Основы функционирования белков. Лекарства как лиганды, влияющие на функцию белков
- •Тема 1.3. Денатурация белков и возможность их спонтанной ренативации
- •Тема 1.4. Особенности строения и функционирования олигомерных белков на примере гемоглобина
- •2. Формирование пространственных структур и функционирование миоглобина.
- •Тема 1.5. Поддержание нативной конформации белков в условиях клетки
- •1. Молекулярные шапероны и их роль в предотвращении денатурации белков.
- •Тема 1.6. Многообразие белков. Семейства белков на примере иммуноглобулинов
- •Тема 1.7. Физико-химические свойства белков и методы их разделения
- •Тема 2.1. Свойства ферментов как белковых
- •2. Для ферментов характерны:
- •Тема 2.2. Активный центр: специфичность действия ферментов
- •Тема 2.3. Механизм действия ферментов
- •Тема 2.4. Кофакторы и коферменты
- •Тема 2.5. Классификация и номенклатура
- •Тема 2.6. Основы кинетики ферментативного
- •Тема 2.7. Ингибиторы активности ферментов
- •Тема 2.8. Регуляция активности ферментов
- •Тема 2.9. Применение ферментов в медицине
- •Тема 2.10. Энзимопатии
- •Тема 3.1. Строение и функции днк и рнк
- •Тема 3.2. Биосинтез днк (репликация)
- •I. Формирование репликативной вилки.
- •II. Синтез новых цепей днк.
- •III. Исключение праймеров. Завершение формирования отстающей цепи
- •II. Синтез новых цепей днк
- •III. Исключение праймеров. Завершение формирования отстающей цепи днк
- •Тема 3.3. Репарация ошибок и повреждений днк
- •Тема 3.4. Биосинтез рнк (транскрипция). Посттранскрипционные модификации рнк
- •Тема 3.5. Трансляция как механизм перевода генетической информации в фенотипические
- •Тема 3.6. Ингибиторы матричных биосинтезов: лекарственные препараты, яды и бактериальные токсины
- •Тема 3.7. Механизмы адаптивной регуляции активности генов у прокариотов и эукариотов
- •Тема 3.8. Механизмы, обеспечивающие разнообразие белков у эукариотов
- •Тема 3.9. Механизмы генетической изменчивости: эволюционная изменчивость, полиморфизм белков. Наследственные болезни
- •Тема 3.10. Использование рекомбинантных днк
- •Тема 4.1. Общая характеристика мембран.
- •Тема 4.2. Транспорт веществ через мембраны
- •3. Перенос макромолекул и частиц с участием мембран - эндоцитоз и экзоцитоз.
- •Тема 4.3. Трансмембранная передача сигналов
- •Тема 5.1. Взаимосвязь обмена веществ и энергии
- •Тема 5.2. Тканевое дыхание
- •Тема 5.3. Митохондриальная цепь переноса электронов
- •1. Перенос электронов на кислород происходит при участии системы переносчиков, локализованных во внутренней мембране митохондрий и образующих цепь переноса электронов (цпэ) (рис. 5.6).
- •Тема 5.4. Сопряжение тканевого дыхания и синтеза атф
- •4. Таким образом, трансформация энергии в организме проходит следующие этапы.
- •Тема 5.5. Дыхательный контроль
- •Тема 5.6. Разобщение дыхания и синтеза атф
- •Тема 5.7. Терморегуляторная функция дыхания
- •Тема 5.8. Ингибиторы дыхания
- •Тема 5.9. Заключительный этап катаболизма пищевых веществ. Специфические и общий пути
- •1. Первая реакция опк - реакция окислительного декарбоксилирования пирувата описывается следующим суммарным уравнением (рис. 5.14).
- •2. Ацетил-КоА, образовавшийся в реакции, катализируемой пдк, далее вступает в цитратный цикл (рис. 5.16).
- •Тема 5.10. Анаболические функции общего пути катаболизма (опк)
- •1. Метаболиты опк служат предшественниками в синтезе ряда веществ в организме: аминокислот, глюкозы, жирных кислот и других соединений (рис. 5.19).
- •2. Убыль метаболитов цитратного цикла восполняется с помощью анаплеротических («пополняющих») реакций, главной из которых является реакция карбоксилирования пирувата.
- •Тема 5.11. Регуляция энергетического обмена
- •Тема 5.12. Гипоэнергетические состояния
- •Тема 6.1. Основные углеводы пищи. Строение,
- •1. Основным источником углеводов организма являются углеводы пищи, к которым относится крахмал. Кроме того, в пище содержатся глюкоза, фруктоза, сахароза и лактоза.
- •Тема 6.2. Трансмембранный перенос глюкозы и других моносахаридов из кишечника в кровь и из крови в клетки тканей. Пути превращения
- •Тема 6.3. Синтез гликогена (гликогеногенез), мобилизация гликогена (гликогенолиз). Регуляция процессов
- •5. Регуляция метаболизма гликогена в печени.
- •Тема 6.4. Нарушения переваривания и всасывания углеводов, синтеза и распада гликогена
- •1. Причинами нарушений переваривания углеводов могут быть:
- •Тема 6.5. Катаболизм глюкозы: аэробный и анаэробный гликолиз. Аэробный распад глюкозы до со2 и н2о
- •2. В аэробном и анаэробном гликолизе можно выделить два этапа.
- •Тема 6.6. Биологическое значение катаболизма глюкозы. Регуляция процесса
- •3. Анаболическое значение катаболизма глюкозы.
- •4. Регуляция катаболизма глюкозы в скелетных мышцах. Основное значение гликолиза - синтез атф, поэтому его скорость должна коррелировать с затратами энергии в организме.
- •Тема 6.7. Пентозофосфатный путь превращения
- •Тема 6.8. Синтез глюкозы (глюконеогенез)
- •2. Большинство реакций гликолиза и глюконеогенеза являются обратимыми и катализируются одними и теми же ферментами (рис. 6.20). Четыре реакции глюконеогенеза необратимы.
- •4. Существенное влияние на глюконеогенез оказывает этанол. Метаболизм этанола на 90% происходит в печени.
- •Тема 6.9. Регуляция гликолиза и глюконеогенеза
- •1. Переключение метаболизма печени с гликолиза на глюконеогенез и наоборот происходит при помощи:
- •Тема 6.10. Регуляция содержания глюкозы в крови, гиперглюкоземия
- •Тема 7.1. Коллаген
- •Тема 7.2. Эластин
- •Тема 7.3. Гетерополисахариды межклеточного
- •Тема 7.4. Неколлагеновые структурные белки межклеточного матрикса
- •Тема 7.5. Структурная организация межклеточного матрикса (суставной хрящ, базальные мембраны, субэпителиальные слои)
- •Тема 10.1. Биосинтез и катаболизм пуриновых рибонуклеотидов. Заболевания, связанные с нарушением их метаболизма
- •3. Синтез нуклеозиддифосфатов (ндф) и нуклеозидтрифосфатов (нтф) происходит при участии атф и ферментов нуклеозидмонофосфат- илинуклеозиддифосфаткиназ (нмф- и ндф-киназы соответственно) (рис. 10.3).
- •4. Регуляция процесса. Амф, гмф, имф, ди- и трифосфаты адениловых и гуаниловых нуклеотидов ингибируют ключевые реакции своего синтезааллостерически по механизму отрицательной обратной связи.
- •2. Регуляция процесса. Активность ферментов синтеза пиримидиновых нуклеотидов регулируется аллостерически по механизму отрицательной обратной связи конечными продуктами умф и цтф:
- •Тема 10.3. Биосинтез дезоксирибонуклеотидов.
- •3. Синтез дТмф из дУмф катализирует тимидилатсинтаза с участием n5n10- метилен н4-фолата, за счет которого:
- •4. Количество ферментов рнРазы и тимидилатсинтазы регулируется на
- •5. Небольшое количество дезоксирибонуклеотидов может образовываться по «запасному» пути в реакциях, катализируемых тимидинкиназой и дезоксицитидинкиназой:
- •Тема 10.4. Механизмы действия противовирусных и противоопухолевых препаратов на ферменты синтеза рибо- и дезоксирибонуклеотидов
- •Тема 8.1. Строение и функции основных липидов организма человека
- •Тема 8. 2. Переваривание и всасывание жиров. Ресинтез жиров в клетках слизистой оболочки
- •Тема 8.3. Хиломикроны - транспортная форма экзогенных жиров
- •Тема 8.4. Биосинтез высших жирных кислот и его регуляция
- •2. Первая реакция синтеза жирных кислот - это превращение ацетил-КоА в малонил-КоА:
- •3. Последующие реакции синтеза жирных кислот катализируются ферментным комплексом - синтазой жирных кислот или пальмитатсинтазой. Конечным продуктом синтеза является пальмитиновая кислота.
- •5. Регуляция синтеза жирных кислот.
- •Тема 8.5. Биосинтез жиров в печени и жировой ткани. Регуляция синтеза жиров
- •3. В печени жирные кислоты, необходимые для синтеза жиров, синтезируются в основном из продуктов катаболизма глюкозы. Далее синтез жиров идет через образование фосфатидной кислоты (рис. 8.13).
- •5. Запасание жиров в жировой ткани - так называемое депонирование жиров - происходит в абсорбтивный период, когда увеличивается соотношение инсулин - глюкагон.
- •Тема 8.6. Ожирение
- •2. Первичное ожирение развивается в результате алиментарного дисбаланса - избыточной калорийности питания по сравнению с расходами энергии.
- •Тема 8.7. Мобилизация жира. Гормональная
- •2. Мобилизация жира происходит в основном под действием гормонов глюкагона и адреналина и представляет собой гидролиз жира в адипоцитах до жирных кислот и глицерола ферментом - гормончувствительной
- •Тема 8.8. Β-окисление высших жирных кислот - источник энергии для синтеза атф. Регуляция I -окисления
- •4. Регуляция β-окисления. Скорость процесса β-окисления зависит от ряда факторов:
- •Тема 8.9. Кетоновые тела: синтез и катаболизм.
- •1. К кетоновым телам относят три вещества: β-гидроксибутират, ацетоацетат и ацетон.
- •Тема 8.10. Производные полиеновых кислот - эйкозаноиды: строение, биосинтез и биологическое действие
- •6. Ингибиторами синтеза эйкозаноидов являются:
- •7. Роль эйкозаноидов в регуляции свертывания крови. В норме свертывающая и противосвертывающая системы крови пребывают в состоянии равновесия, при котором кровь находится в жидком состоянии,
- •Тема 8.11. Холестерол, биологические функции. Поступление с пищей и транспорт кровью экзогенного холестерола
- •Тема 8.12. Биосинтез холестерола и его регуляция
- •Тема 8.13. Биосинтез желчных кислот и их роль
- •Тема 8.14. Роль липопротеинов в транспорте
- •Тема 8.15. Типы дислипопротеинемий. Биохимические основы патогенеза и лечения
- •Тема 9.1. Роль белков в питании. Азотистый баланс
- •Тема 9.2. Переваривание белков в желудке и кишечнике, всасывание аминокислот
- •Тема 9.3. Трансаминирование и дезаминирование аминокислот
- •Тема 9.4. Обмен аммиака: источники, превращение в тканях
- •Тема 9.5. Орнитиновый цикл и его биологическая роль
- •Тема 9.6. Гипераммониемия и ее причины
- •Тема 9.7. Пути использования безазотистых остатков аминокислот
- •Тема 9.8. Биосинтез заменимых аминокислот
- •Тема 9.9. Обмен серина и глицина.
- •Тема 9.10. Обмен метионина. Реакции трансметилирования
- •Тема 9.11. Обмен фенилаланина, тирозина и гистидина в разных тканях
- •Тема 9.12. Заболевания, связанные с нарушением обмена фенилаланина и тирозина
- •Тема 9.13. Биогенные амины: синтез, инактивация, биологическая роль
- •Тема 11.1. Роль гомонов в регуляции метаболизма
- •Тема 11.2. Механизмы передачи гормональных сигналов в клетки
- •Тема 11.3. Строение и биосинтез гормонов
- •Тема 11.4. Регуляция обмена основных энергоносителей при нормальном ритме
- •Тема 11.5. Изменения метаболизма при гипо- и гиперсекреции гормонов
- •Тема 11.6. Изменения гормонального статуса и метаболизма при голодании и физической работе
- •Тема 11.7. Изменения гормонального статуса и метаболизма при сахарном диабете
- •Тема 11.8. Регуляция водно-солевого обмена
- •Тема 11.9. Регуляция обмена кальция и фосфатов. Строение, синтез и механизм действия паратгормона, кальцитриола и кальцитонина
- •Тема 12.1. Механизмы обезвреживания токсических веществ
- •Тема 12.2. Обезвреживание продуктов катаболизма аминокислот в кишечнике
- •Тема 12.3. Биотрансформация лекарств
- •Тема 12.4. Метаболизм и обезвреживание
- •Тема 12.5. Химический канцерогенез
- •Тема 13.1. Синтез гема и его регуляция
- •Тема 13.2. Обмен железа
- •Тема 13.3. Катаболизм гема
- •Тема 14.1. Метаболизм эритроцитов
- •Тема 14.2. Особенности метаболизма фагоцитирующих клеток
- •Тема 14.3. Основные биохимические механизмы
- •Тема 14.4. Основные свойства белковых фракций крови и значение их определения для диагностики заболеваний
Тема 9.10. Обмен метионина. Реакции трансметилирования
1. Метионин - незаменимая аминокислота, необходимая для синтеза белков. Мет-тРНКмет участвует в инициации процесса трансляции каждого белка. Как и многие другие аминокислоты, метионин подвергается транс- и дезаминированию. Особая роль метионина заключается в том, что метильная группа этой аминокислоты используется для синтеза целого ряда соединений в реакциях трансметилирования. Основным донором метильной группы является S-аденозилметионин (SAM) - активная форма метионина, который присутствует во всех типах клеток и синтезируется из метионина и АТФ под действием фермента метионин-аденозилтрансферазы:
|
Структура
-S+-CH3 в SAM является нестабильной,
метильная группа легко отщепляется,
что определяет высокую способность ее
к переносу на другие соединения в
реакциях трансметилирования (рис. 9.20).
Рис.
9.20. Метаболизм метионина
В реакциях трансметилирования SAM превращается в S-аденозилгомо- цистеин (SAr), который гидролитически расщепляется с образованием аденозина и гомоцистеина. Последний может снова превращаться в метионин с участием метил-Н4-фолата и витамина В12. Регенерация метионина тесно связана с обменом серина и глицина и взаимопревращениями производных Н4-фолата (см. рис. 9.20).
2. Метионин и серин необходимы для синтеза условно заменимой аминокислоты цистеина, причем в этом процессе метионин является донором атома серы. Цистеин образуется непосредственно из гомоцистеина в ходе двух реакций, которые происходят с участием пиридоксальфосфата (см. рис. 9.20). Генетический дефект этих ферментов приводит к нарушению использования гомоцистеина в организме и превращению его вгомоцистин.
Гомоцистин может накапливаться в крови и тканях, выделяться с мочой, вызывая гомоцистинурию. Заболевание сопровождается эктопией (смещением) хрусталика глаза, катарактой, остеопорозом, умственной отсталостью (-50% больных). Причиной заболевания могут служить как наследственные нарушения обмена гомоцистеина, так и гиповитаминоз фолиевой кислоты или витаминов В12 и
SАМ как донор метильной группы участвует в синтезе многих веществ (лецитина, адреналина, карнитина, ацетилхолина, креатина и др.), а также в инактивации нормальных метаболитов и обезвреживании токсических веществ в печени.
3. Синтез фосфатидилхолина (лецитина) наиболее активно протекает в печени, которая использует лецитин на построение мембран и формирование липопротеинов. Реакцию катализирует фосфатидилэтаноламинтрансметилаза.
|
В
клетки других тканей фосфатидилхолин
доставляется в составе ЛПНП. Особую
роль лецитин играет в метаболизме ЛПВП
(см. модуль 8).
4. Синтез карнитина - переносчика ацильной группы в митохондрии - происходит путем метилирования γ-аминомасляной кислоты с участием SAM:
5.
Синтез креатина происходит с
использованием трех аминокислот:аргинина,
глицина и метионина. Процесс
начинается в почках, в реакцию вступают
аргинин и глицин. Образующийся
гуанидинацетат поступает затем в печень,
где подвергается метилированию с
участием SAM и превращается в креатин.
Из печени креатин транспортируется в
мышцы и головной мозг.
Креатин в клетках превращается в креатинфосфат - макроэргическое соединение, являющееся резервной формой энергии в мышечной и нервной тканях. Содержание креатинфосфата в покоящейся мышце в восемь раз выше, чем АТФ. Эту реакцию катализирует ферменткреатинкиназа (рис. 9.21).
Рис.
9.21. Схема синтеза и использования
креатина
Креатинфосфат играет важную роль в обеспечении работающей мышцы энергией в начальный период физической работы. В работающей мышце концентрация АТФ некоторое время остается постоянной, а концентрация креатинфосфата быстро снижается. Часть образовавшегося креатина и креатинфосфата с постоянной скоростью превращается в креатинин, который выводится с мочой (норма - 1-2 г/сут, или 8,8-17,6 ммоль/л)
При уменьшении массы мышц вследствие длительного отрицательного азотистого баланса, при состояниях, ведущих к атрофии мышц,выделение креатинина снижается (голодание, острые инфекции, сахарный диабет, гипертиреоз и т.д.). Определение содержания в крови креатина и креатинина используется для диагностики заболеваний, а также как показатель эффективности работы мышц в спортивной медицине.
