- •Тема 1.1. Структурная организация белков. Этапы формирования нативной
- •Тема 1.2. Основы функционирования белков. Лекарства как лиганды, влияющие на функцию белков
- •Тема 1.3. Денатурация белков и возможность их спонтанной ренативации
- •Тема 1.4. Особенности строения и функционирования олигомерных белков на примере гемоглобина
- •2. Формирование пространственных структур и функционирование миоглобина.
- •Тема 1.5. Поддержание нативной конформации белков в условиях клетки
- •1. Молекулярные шапероны и их роль в предотвращении денатурации белков.
- •Тема 1.6. Многообразие белков. Семейства белков на примере иммуноглобулинов
- •Тема 1.7. Физико-химические свойства белков и методы их разделения
- •Тема 2.1. Свойства ферментов как белковых
- •2. Для ферментов характерны:
- •Тема 2.2. Активный центр: специфичность действия ферментов
- •Тема 2.3. Механизм действия ферментов
- •Тема 2.4. Кофакторы и коферменты
- •Тема 2.5. Классификация и номенклатура
- •Тема 2.6. Основы кинетики ферментативного
- •Тема 2.7. Ингибиторы активности ферментов
- •Тема 2.8. Регуляция активности ферментов
- •Тема 2.9. Применение ферментов в медицине
- •Тема 2.10. Энзимопатии
- •Тема 3.1. Строение и функции днк и рнк
- •Тема 3.2. Биосинтез днк (репликация)
- •I. Формирование репликативной вилки.
- •II. Синтез новых цепей днк.
- •III. Исключение праймеров. Завершение формирования отстающей цепи
- •II. Синтез новых цепей днк
- •III. Исключение праймеров. Завершение формирования отстающей цепи днк
- •Тема 3.3. Репарация ошибок и повреждений днк
- •Тема 3.4. Биосинтез рнк (транскрипция). Посттранскрипционные модификации рнк
- •Тема 3.5. Трансляция как механизм перевода генетической информации в фенотипические
- •Тема 3.6. Ингибиторы матричных биосинтезов: лекарственные препараты, яды и бактериальные токсины
- •Тема 3.7. Механизмы адаптивной регуляции активности генов у прокариотов и эукариотов
- •Тема 3.8. Механизмы, обеспечивающие разнообразие белков у эукариотов
- •Тема 3.9. Механизмы генетической изменчивости: эволюционная изменчивость, полиморфизм белков. Наследственные болезни
- •Тема 3.10. Использование рекомбинантных днк
- •Тема 4.1. Общая характеристика мембран.
- •Тема 4.2. Транспорт веществ через мембраны
- •3. Перенос макромолекул и частиц с участием мембран - эндоцитоз и экзоцитоз.
- •Тема 4.3. Трансмембранная передача сигналов
- •Тема 5.1. Взаимосвязь обмена веществ и энергии
- •Тема 5.2. Тканевое дыхание
- •Тема 5.3. Митохондриальная цепь переноса электронов
- •1. Перенос электронов на кислород происходит при участии системы переносчиков, локализованных во внутренней мембране митохондрий и образующих цепь переноса электронов (цпэ) (рис. 5.6).
- •Тема 5.4. Сопряжение тканевого дыхания и синтеза атф
- •4. Таким образом, трансформация энергии в организме проходит следующие этапы.
- •Тема 5.5. Дыхательный контроль
- •Тема 5.6. Разобщение дыхания и синтеза атф
- •Тема 5.7. Терморегуляторная функция дыхания
- •Тема 5.8. Ингибиторы дыхания
- •Тема 5.9. Заключительный этап катаболизма пищевых веществ. Специфические и общий пути
- •1. Первая реакция опк - реакция окислительного декарбоксилирования пирувата описывается следующим суммарным уравнением (рис. 5.14).
- •2. Ацетил-КоА, образовавшийся в реакции, катализируемой пдк, далее вступает в цитратный цикл (рис. 5.16).
- •Тема 5.10. Анаболические функции общего пути катаболизма (опк)
- •1. Метаболиты опк служат предшественниками в синтезе ряда веществ в организме: аминокислот, глюкозы, жирных кислот и других соединений (рис. 5.19).
- •2. Убыль метаболитов цитратного цикла восполняется с помощью анаплеротических («пополняющих») реакций, главной из которых является реакция карбоксилирования пирувата.
- •Тема 5.11. Регуляция энергетического обмена
- •Тема 5.12. Гипоэнергетические состояния
- •Тема 6.1. Основные углеводы пищи. Строение,
- •1. Основным источником углеводов организма являются углеводы пищи, к которым относится крахмал. Кроме того, в пище содержатся глюкоза, фруктоза, сахароза и лактоза.
- •Тема 6.2. Трансмембранный перенос глюкозы и других моносахаридов из кишечника в кровь и из крови в клетки тканей. Пути превращения
- •Тема 6.3. Синтез гликогена (гликогеногенез), мобилизация гликогена (гликогенолиз). Регуляция процессов
- •5. Регуляция метаболизма гликогена в печени.
- •Тема 6.4. Нарушения переваривания и всасывания углеводов, синтеза и распада гликогена
- •1. Причинами нарушений переваривания углеводов могут быть:
- •Тема 6.5. Катаболизм глюкозы: аэробный и анаэробный гликолиз. Аэробный распад глюкозы до со2 и н2о
- •2. В аэробном и анаэробном гликолизе можно выделить два этапа.
- •Тема 6.6. Биологическое значение катаболизма глюкозы. Регуляция процесса
- •3. Анаболическое значение катаболизма глюкозы.
- •4. Регуляция катаболизма глюкозы в скелетных мышцах. Основное значение гликолиза - синтез атф, поэтому его скорость должна коррелировать с затратами энергии в организме.
- •Тема 6.7. Пентозофосфатный путь превращения
- •Тема 6.8. Синтез глюкозы (глюконеогенез)
- •2. Большинство реакций гликолиза и глюконеогенеза являются обратимыми и катализируются одними и теми же ферментами (рис. 6.20). Четыре реакции глюконеогенеза необратимы.
- •4. Существенное влияние на глюконеогенез оказывает этанол. Метаболизм этанола на 90% происходит в печени.
- •Тема 6.9. Регуляция гликолиза и глюконеогенеза
- •1. Переключение метаболизма печени с гликолиза на глюконеогенез и наоборот происходит при помощи:
- •Тема 6.10. Регуляция содержания глюкозы в крови, гиперглюкоземия
- •Тема 7.1. Коллаген
- •Тема 7.2. Эластин
- •Тема 7.3. Гетерополисахариды межклеточного
- •Тема 7.4. Неколлагеновые структурные белки межклеточного матрикса
- •Тема 7.5. Структурная организация межклеточного матрикса (суставной хрящ, базальные мембраны, субэпителиальные слои)
- •Тема 10.1. Биосинтез и катаболизм пуриновых рибонуклеотидов. Заболевания, связанные с нарушением их метаболизма
- •3. Синтез нуклеозиддифосфатов (ндф) и нуклеозидтрифосфатов (нтф) происходит при участии атф и ферментов нуклеозидмонофосфат- илинуклеозиддифосфаткиназ (нмф- и ндф-киназы соответственно) (рис. 10.3).
- •4. Регуляция процесса. Амф, гмф, имф, ди- и трифосфаты адениловых и гуаниловых нуклеотидов ингибируют ключевые реакции своего синтезааллостерически по механизму отрицательной обратной связи.
- •2. Регуляция процесса. Активность ферментов синтеза пиримидиновых нуклеотидов регулируется аллостерически по механизму отрицательной обратной связи конечными продуктами умф и цтф:
- •Тема 10.3. Биосинтез дезоксирибонуклеотидов.
- •3. Синтез дТмф из дУмф катализирует тимидилатсинтаза с участием n5n10- метилен н4-фолата, за счет которого:
- •4. Количество ферментов рнРазы и тимидилатсинтазы регулируется на
- •5. Небольшое количество дезоксирибонуклеотидов может образовываться по «запасному» пути в реакциях, катализируемых тимидинкиназой и дезоксицитидинкиназой:
- •Тема 10.4. Механизмы действия противовирусных и противоопухолевых препаратов на ферменты синтеза рибо- и дезоксирибонуклеотидов
- •Тема 8.1. Строение и функции основных липидов организма человека
- •Тема 8. 2. Переваривание и всасывание жиров. Ресинтез жиров в клетках слизистой оболочки
- •Тема 8.3. Хиломикроны - транспортная форма экзогенных жиров
- •Тема 8.4. Биосинтез высших жирных кислот и его регуляция
- •2. Первая реакция синтеза жирных кислот - это превращение ацетил-КоА в малонил-КоА:
- •3. Последующие реакции синтеза жирных кислот катализируются ферментным комплексом - синтазой жирных кислот или пальмитатсинтазой. Конечным продуктом синтеза является пальмитиновая кислота.
- •5. Регуляция синтеза жирных кислот.
- •Тема 8.5. Биосинтез жиров в печени и жировой ткани. Регуляция синтеза жиров
- •3. В печени жирные кислоты, необходимые для синтеза жиров, синтезируются в основном из продуктов катаболизма глюкозы. Далее синтез жиров идет через образование фосфатидной кислоты (рис. 8.13).
- •5. Запасание жиров в жировой ткани - так называемое депонирование жиров - происходит в абсорбтивный период, когда увеличивается соотношение инсулин - глюкагон.
- •Тема 8.6. Ожирение
- •2. Первичное ожирение развивается в результате алиментарного дисбаланса - избыточной калорийности питания по сравнению с расходами энергии.
- •Тема 8.7. Мобилизация жира. Гормональная
- •2. Мобилизация жира происходит в основном под действием гормонов глюкагона и адреналина и представляет собой гидролиз жира в адипоцитах до жирных кислот и глицерола ферментом - гормончувствительной
- •Тема 8.8. Β-окисление высших жирных кислот - источник энергии для синтеза атф. Регуляция I -окисления
- •4. Регуляция β-окисления. Скорость процесса β-окисления зависит от ряда факторов:
- •Тема 8.9. Кетоновые тела: синтез и катаболизм.
- •1. К кетоновым телам относят три вещества: β-гидроксибутират, ацетоацетат и ацетон.
- •Тема 8.10. Производные полиеновых кислот - эйкозаноиды: строение, биосинтез и биологическое действие
- •6. Ингибиторами синтеза эйкозаноидов являются:
- •7. Роль эйкозаноидов в регуляции свертывания крови. В норме свертывающая и противосвертывающая системы крови пребывают в состоянии равновесия, при котором кровь находится в жидком состоянии,
- •Тема 8.11. Холестерол, биологические функции. Поступление с пищей и транспорт кровью экзогенного холестерола
- •Тема 8.12. Биосинтез холестерола и его регуляция
- •Тема 8.13. Биосинтез желчных кислот и их роль
- •Тема 8.14. Роль липопротеинов в транспорте
- •Тема 8.15. Типы дислипопротеинемий. Биохимические основы патогенеза и лечения
- •Тема 9.1. Роль белков в питании. Азотистый баланс
- •Тема 9.2. Переваривание белков в желудке и кишечнике, всасывание аминокислот
- •Тема 9.3. Трансаминирование и дезаминирование аминокислот
- •Тема 9.4. Обмен аммиака: источники, превращение в тканях
- •Тема 9.5. Орнитиновый цикл и его биологическая роль
- •Тема 9.6. Гипераммониемия и ее причины
- •Тема 9.7. Пути использования безазотистых остатков аминокислот
- •Тема 9.8. Биосинтез заменимых аминокислот
- •Тема 9.9. Обмен серина и глицина.
- •Тема 9.10. Обмен метионина. Реакции трансметилирования
- •Тема 9.11. Обмен фенилаланина, тирозина и гистидина в разных тканях
- •Тема 9.12. Заболевания, связанные с нарушением обмена фенилаланина и тирозина
- •Тема 9.13. Биогенные амины: синтез, инактивация, биологическая роль
- •Тема 11.1. Роль гомонов в регуляции метаболизма
- •Тема 11.2. Механизмы передачи гормональных сигналов в клетки
- •Тема 11.3. Строение и биосинтез гормонов
- •Тема 11.4. Регуляция обмена основных энергоносителей при нормальном ритме
- •Тема 11.5. Изменения метаболизма при гипо- и гиперсекреции гормонов
- •Тема 11.6. Изменения гормонального статуса и метаболизма при голодании и физической работе
- •Тема 11.7. Изменения гормонального статуса и метаболизма при сахарном диабете
- •Тема 11.8. Регуляция водно-солевого обмена
- •Тема 11.9. Регуляция обмена кальция и фосфатов. Строение, синтез и механизм действия паратгормона, кальцитриола и кальцитонина
- •Тема 12.1. Механизмы обезвреживания токсических веществ
- •Тема 12.2. Обезвреживание продуктов катаболизма аминокислот в кишечнике
- •Тема 12.3. Биотрансформация лекарств
- •Тема 12.4. Метаболизм и обезвреживание
- •Тема 12.5. Химический канцерогенез
- •Тема 13.1. Синтез гема и его регуляция
- •Тема 13.2. Обмен железа
- •Тема 13.3. Катаболизм гема
- •Тема 14.1. Метаболизм эритроцитов
- •Тема 14.2. Особенности метаболизма фагоцитирующих клеток
- •Тема 14.3. Основные биохимические механизмы
- •Тема 14.4. Основные свойства белковых фракций крови и значение их определения для диагностики заболеваний
Тема 8.4. Биосинтез высших жирных кислот и его регуляция
1. Образование субстратов для биосинтеза высших жирных кислот.
Субстратами для синтеза жирных кислот являются продукты катаболизма глюкозы, поэтому синтез жирных кислот происходит при высокой концентрации глюкозы в крови в абсорбтивный период, в основном, в печени. С меньшей активностью синтез жирных кислот идет в жировой ткани. В период лактации синтез жирных кислот активно происходит в молочных железах и жирные кислоты включаются в жиры молока. В клетках, где происходит синтез жирных кислот, активируются гликолиз и пентозофосфатный путь катаболизма глюкозы, в результате которых образуются субстраты для синтеза жирных кислот: ацетил-КоА, NADPH, ATФ. Синтезированные жирные кислоты быстро включаются в состав других молекул: жиров и фосфолипидов. Синтез жирных кислот и жиров называется липогенезом.
Образование ацетил-КоА в результате окислительного декарбоксилирования пирувата - конечного продукта гликолиза - происходит в матриксе митохондрий, но ацетил-КоА не проникает через мембрану митохондрий в цитоплазму, где идет синтез жирных кислот. Поэтому ацетил-КоА конденсируется с оксалоацетатом, образуя цитрат, который с помощью транслоказы переносится в цитоплазму (рис. 8.7). В цитоплазме под действием фермента цитратлиазы идет реакция:
|
Рис.
8.7. Перенос ацетильных остатков из
митохондрий в цитозоль.
Ацетил-КоА, образующийся под действием пируватдегидрогеназного комплекса (1), не проникает через мембрану митохондрий в цитоплазму, где происходит синтез жирных кислот. Поэтому ацетил-КоА конденсируется ферментом цитратсинтазой с оксалоацетатом (2), образуя цитрат, который с помощью транслоказы переносится в цитоплазму, где он расщепляется под действием цитратлиазы (3), и ацетил-КоА используется как субстрат для синтеза жирных кислот. Реакция, катализируемая малик-ферментом (4), является одним из источников NADPH для синтеза жирных кислот
Ацетил-КоА,
перенесенный в цитоплазму, является
исходным субстратом для синтеза жирных
кислот, а оксалоацетат подвергается
следующим превращениям:
Пируват
возвращается в матрикс митохондрий, a
NADPH, восстановленный в результате
действия малик-фермента, используется
как донор водорода для последующих
реакций синтеза жирных кислот. Другой
источник NADPH - реакция, катализируемая
ферментом пентозофосфатного пути -
глюкозо-6-фосфатдегидрогеназой.
2. Первая реакция синтеза жирных кислот - это превращение ацетил-КоА в малонил-КоА:
Фермент,
катализирующий эту
реакцию, ацетил-КоА-карбоксилаза,является регуляторным в
биосинтезе жирных кислот. Он относится
к классу лигаз и в качестве кофермента
использует биотин.
3. Последующие реакции синтеза жирных кислот катализируются ферментным комплексом - синтазой жирных кислот или пальмитатсинтазой. Конечным продуктом синтеза является пальмитиновая кислота.
Синтаза жирных кислот - полифункциональный фермент, состоящий из двух идентичных полипептидных цепей, каждая из которых имеет семь активных центров и ацилпереносящий белок, который переносит растущую цепь жирной кислоты из одного активного центра в другой. Каждый из белков имеет два центра связывания, содержащих SH-группы, одна из которых принадлежит цистеину, другая - фосфопантотеину. Схематично этот комплекс изображают таким образом:
|
Синтез
жирной кислоты начинается с переноса
ацетильного, а затем малонильного
остатков с помощью ферментов
ацетилтрансацилазы и малонилтрансацилазы
на активные центры синтазы жирных кислот
(рис. 8.8, реакции 1, 2). Далее карбоксильная
группа малонила выделяется в виде СО2 и
по освободившейся валентности
присоединяется ацетил с образованием
ацетоацетил-Е (рис. 8.8, реакция 3).
Последующие реакции восстановления,
дегидратации, восстановления (реакции
4-6) приводят к образованию радикала
бутирила, связанного с ферментом. Затем
повторяется такой же цикл реакций и
образуется радикал жирной кислоты с
шестью углеродными атомами. Циклы
повторяются вплоть до образования
радикала пальмитиновой кислоты, который
ферментом тиоэстеразой отщепляется от
ферментного комплекса. Так как биосинтез
жирных кислот является процессом, в
котором повторяются одни и те же
последовательности реакций, процесс
называют циклическим; в каждом цикле
радикал жирной кислоты увеличивается
на два атома углерода, источником которых
является малонил-КоА (рис. 8.8, 8.9).
В каждом цикле происходят реакции
восстановления с использованием NADPH +
H+, одним из источников которого является
пентозофосфатный путь окисления глюкозы,
другим - малик-фермент. Реакции
восстановления обеспечивают синтез
насыщенного алифатического радикала
жирных кислот.
Рис.
8.8. Синтез пальмитиновой кислоты.
Пальмитоил-Е - остаток пальмитиновой кислоты, связанный с синтазой жирных кислот. Пальмитиновая кислота отделяется от ферментного комплекса тиоэстеразой. В синтезированной жирной кислоте только два дистальных атома углерода (СН3 и соседний с ним), выделенные красным цветом, происходят из ацетил-КоА, остальные атомы углерода включаются в радикал жирной кислоты из молекул малонил-КоА
|
Рис.
8.9. Этапы синтеза пальмитиновой кислоты
Реакции восстановления обеспечивают синтез насыщенного алифатического радикала жирных кислот
4. Другие жирные кислоты в организме человека синтезируются из пальмитиновой кислоты. Удлинение углеродного скелета происходит также с использованием малонил-КоА. Таким образом синтезируется, например, стеариновая кислота. В организме человека возможен синтез ненасыщенных кислот, однако двойная связь может быть образована у 9 атома углерода (С161 Δ9) и между карбонильной группой и С9. В организме человека не синтезируются жирные кислоты с двойными связями, расположенными дистальнее С9, поэтому полиеновые жирные кислоты с двойными связями между С9 и метильной группой являются эссенциальными и их необходимо получать с пищей. Для обеспечения потребностей организма в эссенциальных жирных кислотах суточная норма жиров (-80-100 г) должна на треть состоять из жиров растительного происхождения.
Образованные жирные кислоты не остаются в клетках в свободном виде, а используются для синтеза жиров и фосфолипидов. Жиры, синтезированные в жировой ткани, запасаются в ней, а жиры, синтезированные в печени, упаковываются в ЛПОНП, которые секретируются в кровь.
