- •Санкт-Петербург
- •1.1. Определение интеллектуальной системы.
- •1.2. Исторический обзор работ в области ис.
- •1.3. Распознавание изображений.
- •1.4. Экспертные системы.
- •1.5. Гибридная интеллектуальная система.
- •1.6. Интеллектуальные системы автоматизированного проектирования.
- •1.7. Игровые программы.
- •1.8. Нейрокибернетика
- •2. Методологии и технологии проектирования в ис
- •2.1. Case-технология проектирования.
- •2.1.1. Анализ требований
- •2.1.2. Проектирование
- •2.1.3. Методологии и технологии проектирования ис
- •2.2. Методология rad
- •2.4. Семейство методологий idef.
- •Idef1x- методология
- •2.5. Практическое использование case-технологии при решении задач проектирования.
- •2.5.1. Использование классического экспертного подхода
- •2.5.1.1. Выбор минимального числа объектов автоматизации при максимальном взаимном обеспечении информацией
- •2.5.1.2. Многокритериальный выбор технологических процессов производства технически сложных изделий
- •2.5.2. Использование case-технологии
- •3. Мультимедиа, как совокупность интеллектуальных технологий в ис
- •3.1. Технология создания проектной документации.
- •3.1.2. Гипертекстовая и гипермедийная структура документа.
- •3.2. Основы мультимедиа
- •3.3. Применение мультимедиа для проектирования и производства
- •3.4. Другие области применения технологии мультимедиа
- •3.5. Инструментальные системы мультимедиа
- •3.6. Практические аспекты внедрения технологии мультимедиа в ис
- •3.6.1. Обзор по для разработки мультимедийных программных продуктов.
- •3.6. Правильный выбор инструмента
1.3. Распознавание изображений.
Рождение робототехники выдвинуло задачи машинного зрения и распознавания изображений в число первоочередных.
В традиционном распознавании образов появился хорошо разработанный математический аппарат, и для не очень сложных объектов оказалось возможным строить практически работающие системы классификации по признакам, по аналогии и т. д. В качестве признаков могут рассматриваться любые характеристики распознаваемых объектов. Признаки должны быть инвариантны к ориентации, размеру и вариациям формы объектов. Алфавит признаков придумывается разработчиком системы. Качество распознавания во многом зависит от того, насколько удачно придуман алфавит признаков. Распознавание состоит в априорном получении вектора признаков для выделенного на изображении отдельного распознаваемого объекта, и лишь затем в определении того, какому из эталонов этот вектор соответствует.
П. Уинстон в начале 80-х годов обратил внимание на необходимость реализации целенаправленного процесса машинного восприятия. Цель должна управлять работой всех процедур, в том числе и процедур нижнего уровня, т. е. процедур предварительной обработки и выделения признаков. Должна иметься возможность на любой стадии процесса в зависимости от получаемого результата возвращаться к его началу для уточнения результатов работы процедур предшествующих уровней. У П. Уинстона, так же как и у других исследователей, до решения практических задач дело не дошло, хотя в 80-е годы вычислительные мощности больших машин позволяли начать решение подобных задач. Таким образом, ранние традиционные системы распознавания, основывающиеся на последовательной организации процесса распознавания и классификации объектов, эффективно решать задачи восприятия сложной зрительной информации не могли.
1.4. Экспертные системы.
Методы ИИ нашли применение при создании автоматических консультирующих систем. До 1968 года исследователи в области ИИ работали на основе общего подхода - упрощения комбинаторики, базирующегося на уменьшении перебора альтернатив исходя из здравого смысла, применения числовых функций оценивания и различных эвристик.
Экспе́ртная систе́ма (ЭС, expert system) — компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные ЭС начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление. Предтечи экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие находить решения по заданным условиям, например определять наиболее подходящие лекарства по наблюдаемым у пациента симптомам заболевания.
В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний — как совокупность фактов и правил логического вывода в выбранной предметной области деятельности.
Похожие действия выполняет такой программный инструмент как Мастер (Wizard). Мастера применяются как в системных программах так и в прикладных для упрощения интерактивного общения с пользователем (например, при установке ПО). Главное отличие мастеров от ЭС — отсутствие базы знаний — все действия жестко запрограммированы. Это просто набор форм для заполнения пользователем.
Другие подобные программы — поисковые или справочные (энциклопедические) системы. По запросу пользователя они предоставляют наиболее подходящие (релевантные) разделы базы статей (представления об объектах областей знаний, их виртуальную модель).
Структура ЭС:
- Интерфейс пользователя
- Пользователь
- Интеллектуальный редактор базы знаний
- Эксперт
- Инженер по знаниям
- Рабочая (оперативная) память
- База знаний
- Решатель (механизм вывода)
- Подсистема объяснений
База знаний состоит из правил анализа информации от пользователя по конкретной проблеме. ЭС анализирует ситуацию и, в зависимости от направленности ЭС, дает рекомендации по разрешению проблемы.
Как правило, база знаний экспертной системы содержит факты (статические сведения о предметной области) и правила — набор инструкций, применяя которые к известным фактам можно получать новые факты.
В рамках логической модели баз данных и базы знаний записываются на языке Пролог с помощью языка предикатов для описания фактов и правил логического вывода, выражающих правила определения понятий, для описания обобщенных и конкретных сведений, а также конкретных и обобщенных запросов к базам данных и базам знаний.
Конкретные и обобщенные запросы к базам знаний на языке Пролог записываются с помощью языка предикатов, выражающих правила логического вывода и определения понятий над процедурами логического вывода, имеющихся в базе знаний, выражающих обобщенные и конкретные сведения и знания в выбранной предметной области деятельности и сфере знаний.
Обычно факты в базе знаний описывают те явления, которые являются постоянными для данной предметной области. Характеристики, значения которых зависят от условий конкретной задачи, ЭС получает от пользователя в процессе работы, и сохраняет их в рабочей памяти. Например, в медицинской ЭС факт «У здорового человека 2 ноги» хранится в базе знаний, а факт «У пациента одна нога» — в рабочей памяти.
База знаний ЭС создается при помощи трех групп людей:
эксперты той проблемной области, к которой относятся задачи, решаемые ЭС;
инженеры по знаниям, являющиеся специалистами по разработке ИИС;
программисты, осуществляющие реализацию ЭС.
Режимы функционирования
ЭС может функционировать в 2-х режимах.
1.Режим ввода знаний — в этом режиме эксперт с помощью инженера по знаниям посредством редактора базы знаний вводит известные ему сведения о предметной области в базу знаний ЭС.
2.Режим консультации — пользователь ведет диалог с ЭС, сообщая ей сведения о текущей задаче и получая рекомендации ЭС. Например, на основе сведений о физическом состоянии больного ЭС ставит диагноз в виде перечня заболеваний, наиболее вероятных при данных симптомах.
Классификация ЭС по решаемой задаче:
- Интерпретация данных
- Диагностирование
- Мониторинг
- Проектирование
- Прогнозирование
- Сводное Планирование
- Обучение
- Управление
- Ремонт
- Отладка
Классификация ЭС по связи с реальным временем:
- Статические ЭС - это ЭС, решающие задачи в условиях не изменяющихся во времени исходных данных и знаний.
- Квазидинамические ЭС интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени.
- Динамические ЭС - это ЭС, решающие задачи в условиях изменяющихся во времени исходных данных и знаний.
Этапы разработки ЭС:
- Этап идентификации проблем — определяются задачи, которые подлежат решению, выявляются цели разработки, определяются эксперты и типы пользователей.
- Этап извлечения знаний — проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач.
- Этап структурирования знаний — выбираются ИС и определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы, оценивается адекватность целям системы зафиксированных понятий, методов решений, средств представления и манипулирования знаниями.
- Этап формализации — осуществляется наполнение экспертом базы знаний. В связи с тем, что основой ЭС являются знания, данный этап является наиболее важным и наиболее трудоемким этапом разработки ЭС. Процесс приобретения знаний разделяют на извлечение знаний из эксперта, организацию знаний, обеспечивающую эффективную работу системы, и представление знаний в виде, понятном ЭС. Процесс приобретения знаний осуществляется инженером по знаниям на основе анализа деятельности эксперта по решению реальных задач.
- Реализация ЭС — создается один или нескольких прототипов ЭС, решающие требуемые задачи.
- Этап тестирования — производится оценка выбранного способа представления знаний в ЭС в целом.
В начале 70-х годов произошел качественный скачок и пришло понимание, что необходимы глубокие знания в соответствующей области и выделение знаний из данных, получаемых от эксперта. Появляются экспертные системы (ЭС), или системы, основанные на знаниях.
ЭС MYCIN (середина 70-х годов, Стэнфордский университет) ставила диагноз при инфекционных заболеваниях крови.
ЭС PROSPECTOR (1974-1983 годы, Стэнфордский университет) обнаруживала полезные ископаемые.
ЭС SOPHIE обучала диагностированию неисправностей в электрических цепях. ЭС XCON помогала конфигурировать оборудование для систем VAX фирмы DEC, ЭС PALLADIO помогала проектировать и тестировать СБИС-схемы.
ЭС JUDITH помогает специалистам по гражданским делам и вместе с юристом и с его слов усваивает фактические и юридические предпосылки дела, а затем предлагает рассмотреть различные варианты подходов к разрешению дела.
ЭС LRS оказывает помощь в подборе и анализе информации о судебных решениях и правовых актах в области кредитно-денежного законодательства, связанного с использованием векселей и чеков.
ЭС «Ущерб» на основе российского трудового законодательства обеспечивает юридический анализ ситуации привлечения рабочих и служащих к материальной ответственности при нанесении предприятию материального ущерба действием или бездействием.
Разработка инструментальных средств для создания ЭС ведется постоянно. Появляются экспертные системы оболочки, совершенствуются технологии создания ЭС. Язык Пролог (1975-79 годы) становится одним из основных инструментов создания ЭС. Язык CLIPS (C Language Integrated Production System) начал разрабатываться в космическом центре Джонсона NASA в 1984 году. Язык CLIPS свободен от недостатков предыдущих инструментальных средств для создания ЭС, основанных на языке LISP. Появляется инструментарий EXSYS, ставший в начале 90-х годов одним из лидеров по созданию ЭС. В начале ХХI века появляется теория интеллектуальных агентов и экспертных систем на их основе. Web-ориентированный инструментарий JESS (Java Expert System Shell), использующий язык представления знаний CLIPS, приобрел достаточную известность в настоящее время. Среди отечественных инструментальных средств следует отметить веб ориентированную версию комплекса АТ-ТЕХНОЛОГИЯ, разработанного на кафедре Кибернетики МИФИ. В этом комплексе вся прикладная логика как комплекса в целом, так и разработанных в нем веб интегрированных ЭС, сосредоточена на стороне сервера.
Практика внедрения ЭС показала, что нет чудодейственных рецептов - нужна кропотливая работа по вводу в ЭВМ опыта и знаний специалистов всех областей науки.
