Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Домашняя контрольная работа - 11 кл - Электрики.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
222.38 Кб
Скачать

Определенный интеграл.

Если существует определенный интеграл от функции f(x) , то в этом случае функция называется интегрируемой на отрезке   .

Для интегрируемости функции на отрезке   достаточно, чтобы она была непрерывна на нем или имела конечное число точек конечных разрывов.

Если функция непрерывна на   , то от нее существует неопределенный интеграл

и имеет место формула

т.е. определенный интеграл от непрерывной функции равен разности значений первообразной функции (или неопределенного интеграла) при верхнем и нижнем пределах.

Формула

называется формулой Ньютона-Лейбница. 

Пример 1:

 Необходимо найти определенный интеграл

Имеем:

   Таким образом искомый интеграл равен 6. 

Пример 2:

Вычислить интеграл:

Решение:

=( 3 + 4 +5x) = +2 -

- ( +2 26- 8=18.

Приложение определенного интеграла в экономике

Интегральное исчисление дает богатый математический аппарат для моделирования и исследования процессов, происходящих в экономике.

Задача . Известно, что спрос на некоторый товар задается функцией p = 4 – q2, где q – количество товара (в шт.), p – цена единицы товара (в руб.), а равновесие на рынке данного товара достигается при p* = q* = 1. Определите величину потребительского излишка.

Решение.

Раздел 4. Основы теории комплексных чисел Основные понятия теории комплексных чисел.

Комплексным числом   называется число вида  , где   и   – действительные числа,   – так называемая мнимая единица. Число   называется действительной частью комплексного числа  , число   называется мнимой частью  комплексного числа  .

 – это ЕДИНОЕ  ЧИСЛО, а не сложение. Действительную и мнимую части комплексного числа, в принципе, можно переставить местами:   или переставить мнимую единицу:   – от этого комплексное число не изменится. Но стандартно комплексное число принято записывать именно в таком порядке:  

Сложение комплексных чисел

Пример 1:

Сложить два комплексных числа 

Для того чтобы сложить два комплексных числа нужно сложить их действительные и мнимые части:

Действие настолько очевидно, что не нуждается в дополнительных комментариях.

Таким нехитрым способом можно найти сумму любого количества слагаемых: просуммировать действительные части и просуммировать мнимые части.

Для комплексных чисел справедливо правило первого класса:   – от перестановки слагаемых сумма не меняется.

Вычитание комплексных чисел

Пример 2:

Найти разности комплексных чисел   и  , если   

Действие аналогично сложению, единственная особенность состоит в том, что вычитаемое нужно взять в скобки, а затем – стандартно раскрыть эти скобки со сменой знака:

Результат не должен смущать, у полученного числа две, а не три части. Просто действительная часть – составная:  . Для наглядности ответ можно переписать так:  .

Рассчитаем вторую разность: Здесь действительная часть тоже составная: 

Чтобы не было какой-то недосказанности, приведу короткий пример с «нехорошей» мнимой частью:  . Вот здесь без скобок уже не обойтись.

Умножение комплексных чисел

Настал момент познакомить вас со знаменитым равенством:

Пример 3:

Найти произведение комплексных чисел  

Очевидно, что произведение следует записать так:

Что напрашивается? Напрашивается раскрыть скобки по правилу умножения многочленов. Так и нужно сделать! Все алгебраические действия вам знакомы, главное, помнить, что   и быть внимательным.

Повторим школьное правило умножения многочленов: Чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена.

Я распишу подробно:

Надеюсь, всем было понятно, что 

Внимание, и еще раз внимание, чаще всего ошибку допускают в знаках.

Как и сумма, произведение комплексных чисел перестановочно, то есть справедливо равенство:  .

Деление комплексных чисел

Пример 4:

Даны комплексные числа  . Найти частное  .

Составим частное:

Деление чисел осуществляется методом умножения знаменателя и числителя на сопряженное знаменателю выражение.

Вспоминаем формулу   и смотрим на наш знаменатель . В знаменателе уже есть  , поэтому сопряженным выражением в данном случае является  , то есть 

Согласно правилу, знаменатель нужно умножить на  , и, чтобы ничего не изменилось, домножить числитель на то же самое число  :

Далее в числителе нужно раскрыть скобки (перемножить два числа по правилу, рассмотренному в предыдущем пункте). А в знаменателе воспользоваться формулой   (помним, что  и не путаемся в знаках!!!).

Распишу подробно:

Пример подобран «хороший», если взять два произвольных числа, то в результате деления почти всегда получатся дроби, что-нибудь вроде  .