- •2. Геометрические размеры пламени; факторы, влияющие на них
- •3. Какова t поверхности жидкости при установившемся ее горении?
- •4. Что такое температура кипения и что такое скорость испарения (w)? Зависимость w от Pнас, t, скорости воздушного потока
- •5. Как изменится скорость распространения пламени по поверхности жидкости при увеличении начальной t?
- •6. Какие условия необходимы, чтобы произошло воспламенение жидкости?
- •7. Методы расчета температуры вспышки, ее практическое значение
- •8,9. Зависимость давления насыщенного пара от температуры. Уравнение Клайперона – Клаузиуса. Зависимость Pнас от t . Уравнение Антуана.
- •89 Дж/(моль к), (24),
- •10. Методы определения концентрации ненасыщенного пара в производственных помещениях и оценка их опасности
- •11. Как изменяется температура вспышки горючих растворов при изменении концентрации горючего компонента?
- •12. Методы определения концентрации насыщенного пара в аппаратах и резервуарах, и оценка их опасности
- •13. Линейная скорость выгорания и скорость распространения пламени по гж – это одно и то же понятие или нет?
- •15. По какому параметру классифицируются жидкости на лвж (легковоспламеняющаяся жидкость) и гж (горючая жидкость)?
- •16. Расположите в порядке возрастания температурные параметры пожарной опасности; t горения, t вспышки, t кипения, втпр, t самовоспламенения, нтпр, t воспламенения
- •17. Температурные пределы рп, их практическое значение
- •18. Причины образования гомотермального слоя в горящих жидкостях
- •19. Что является движущей силой процесса рп по гж?
- •20. Как изменится скорость выгорания гж при уменьшении уровня жидкости в резервуаре?
- •21. T вспышки, практическое значение
- •22. Вскипание, причины, условия, меры профилактики
- •23. Насыщенный и ненасыщенный пар. Условия образования, характеристики
- •24. Как меняется скорость распространения пламени по гж при изменении условий окружающей среды?
- •25. Массовая и линейная скорости выгорания жидкости, их взаимосвязь
- •Удельная массовая скорость выгорания некоторых веществ
- •26. Как изменяется t вспышки жидкостей в гомологическом ряду предельных углеводородов?
- •27. Причины рп по поверхности жидкостей, от каких факторов зависит скорость рп
- •28. На что расходуется теплота, падающая от пламени на поверхность горящей жидкости
- •29. Основные особенности горения металлов
- •30. Основные характеристики возникновения, распространение пламени и горения твердых органических веществ
- •31. Индекс распространения пламени по поверхности тгм(твёрдых горючих материалов)
- •33. Показатели токсичности продуктов горения тгм, практическое применение
- •34. Тление, его особенности. Температура тления, практическое применение
- •35. Приведенная массовая скорость выгорания, практическое применение
- •36. Причины токсичности для жизни человека продуктов горения тгм
- •37. Особенности горения пылевидных веществ
- •38. Алгоритм процессов горения тгм
- •39. Схема распространения пламени по поверхности тгм
- •40. Показатель горючести тгм, практическое применение
- •41. Состав продуктов термического разложения тгм
- •Энергия разрыва химических связей органических веществ
- •42. Чем вызвано требование ко всем, о необходимости сначала сообщить в пожарную охрану о возникновении пожара и только, потом приступать к тушению его подручными средствами
- •43. Какими показателями характеризуется пожарная опасность горючей пыли, дайте определение и укажите область практического применения
- •Состав газообразных продуктов неполного горения некоторых твердых веществ (температура 500-550 °с)
- •45. Нкпр пыли, область применения, зависимость от различных условий
- •Основные макростадии процесса термолиза древесины
- •47. Как подразделяются горючие вещества по агрегатному состоянию при определении показателей пожарной опасности?
- •48. Что называется температурой вспышки, для каких веществ она определяется, ее практическое применение, безопасные температуры нагрева гж по температуре вспышки?
- •Виды связей
- •50. Что такое область воспламенения, ее практическое применение, для каких веществ определяется этот параметр; взрывобезопасные концентрации газов и паров гж в смесях с воздухом?
- •51. Что такое температурные пределы распространения пламени, для каких веществ определяются, безопасные температуры нагрева гж?
- •52. Что такое температура тления, для каких веществ определяется, ее практическое применение, безопасные температуры нагрева веществ по температуре тления?
- •53. Что такое условия теплового самовозгорания, для каких веществ определяется, ее практическое применение, безопасные температуры нагрева веществ и материалов по температуре самовозгорания?
- •54. Что такое минимальная энергия зажигания, для каких веществ определяется, ее практическое применение, безопасные источники зажигания по значению их энергии?
- •Зависимость минимальной энергии зажигания от химической природы вещества
- •55. Что такое критический гасящий диаметр, для каких веществ определяется, его практическое применение?
- •56. Что такое группа горючести, для каких веществ определяется, ее практическое применение?
- •57. Что такое температура воспламенения, для каких веществ определяется, ее практическое применение?
- •58. Что такое нижний и верхний концентрационные пределы распространения пламени, для каких веществ определяются, их практическое применение?
- •Концентрационные пределы распространения пламени
- •59. Что такое способность взрываться и гореть при взаимодействии с водой, кислородом воздуха и другими веществами, для каких веществ определяется, практическое применение этого показателя?
- •60. Что такое нормальная скорость распространения пламени, для каких веществ определяется, ее практическое применение?
- •61. Что такое скорость выгорания, для каких веществ определяется, ее практическое применение?
- •62. Коэффициент дымообразования, определение, классификация, область применения, сущность метода определения?
- •Классификация материалов по значению показателя токсичности продуктов горения
- •65. Что такое минимальное взрывоопасное содержание кислорода, для каких веществ определяется, его практическое применение?
- •66. Что такое минимальная флегматизирующая концентрация флегматизатора, для каких веществ определяется, ее практическое применение?
- •67. Что такое максимальное давление взрыва, для каких веществ определяется, его практическое применение?
- •68. Что такое скорость нарастания давления при взрыве, для каких веществ определяется, ее практическое применение?
- •69. Тепловая теория гашения пламени
- •70. Предельные режимы нормального горения, методы их оценки для реальных паровоздушных систем
- •71. Способы тушения пожаров
- •Выбор эффективных огнетушащих средств в зависимости от характеристики горючей среды
- •72. Классификация огнетушащих веществ и способы тушения пожаров
- •73. Огнетушащая эффективность огнетушащих веществ и методы их оценки
- •74. Практическое применение теории гашения. Огнепреградитель, физико-химические основы его действия
- •75. Вода как огнетушащее вещество. Область применения, достоинства, недостатки
- •76. Пены в качестве огнетушащего вещества. Физико-химические основы получения. Область применения, достоинства, недостатки
- •77. Негорючие газы в качестве огнетушащих веществ Область применения, достоинства, недостатки
- •78. Галогенуглеводороды как огнетушащие вещества. Область применения, достоинства, недостатки
- •79. Огнетушащие порошковые составы, механизм действия, эксплуатационные свойства и методы их контроля. Область применения, достоинства, недостатки.
- •80. Пути повышения эффективности основных огнетушащих веществ. Основные типы комбинированных огнетушащих составов
- •Состав и основные свойства комбинированных огнетушащих составов
67. Что такое максимальное давление взрыва, для каких веществ определяется, его практическое применение?
Максимальное давление взрыва - наибольшее избыточное давление, возникающее при дефлаграционном сгорании газо-, паро- или пылевоздушной смеси в замкнутом сосуде при начальном давлении смеси 101,3 кПа.
Значение максимального давления взрыва следует применять при определении категории помещений по взрывопожарной и пожарной опасности в соответствии с требованиями норм технологического проектирования, при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов в соответствии с требованиями ГОСТ 12.1.004 и ГОСТ 12.1.010.
Сущность метода определения максимального давления взрыва заключается в зажигании газо-, паро- и пылевоздушной смеси заданного состава в объеме реакционного сосуда и регистрации избыточного развивающегося при воспламенении горючей смеси давления. Изменяя концентрацию горючего в смеси, выявляют максимальное значение давления взрыва.
Рис. 1. - Установка для определения показателей взрыва пылевоздушных смесей: 1 - реакционный сосуд; 2 - конус распылителя; 3 - форкамера; 4 - обратный клапан; 5 - клапан с электроприводом; 6 - манометр; 7 - ресивер; 8 - газоанализатор: 9 - пульт управления; 10 - источник зажигания; 11 - регистрирующая аппаратура; 12 - датчик давления
68. Что такое скорость нарастания давления при взрыве, для каких веществ определяется, ее практическое применение?
Скорость нарастания давления взрыва - производная давления взрыва по времени на восходящем участке зависимости давления взрыва горючей смеси в замкнутом сосуде от времени.
Значение скорости нарастания давления взрыва следует применять при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов в соответствии с требованиями ГОСТ 12.1.004 и ГОСТ 12.1.010. Сущность метода определения скорости нарастания давления заключается в экспериментальном определении максимального давления взрыва горючей смеси в замкнутом сосуде, построении графика изменения давления взрыва во времени и расчете средней и максимальной скорости по известным формулам. Концентрационный предел диффузионного горения газовых смесей в воздухе (ПДГ) - предельная концентрация горючего газа в смеси с разбавителем, при которой данная газовая смесь при истечении в атмосферу не способна к диффузионному горению.
Концентрационный предел диффузионного горения газовых смесей в воздухе следует учитывать при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов в соответствии с требованиями ГОСТ 12.1.004-91 и ГОСТ 12.1.010-76.
Сущность метода определения концентрационного предела диффузионного горения газовых смесей в воздухе заключается в определении предельной концентрации горючего газа в смеси с разбавителем, при которой данная газовая смесь не способна к диффузионному горению. При этом фиксируется предельная скорость подачи газовой смеси. Метод определения концентрационного предела диффузионного горения газовых смесей в воздухе применим для смесей с температурой 20-300 °С.
69. Тепловая теория гашения пламени
Как известно, боевая работа на пожаре ведется, в общем случае, сразу по нескольким направлениям: спасание людей, сохранение материальных ценностей, прекращение горения. В рамках данной дисциплины рассматривается только одна составляющая тушения пожара - прекращение горения, общие принципы, пути и способы достижения этой цели. Важность понимания этих вопросов обусловлена тем, что на пожаре основным процессом является процесс горения. Поэтому, с физической точки зрения, прекращение горения во всех его видах означает ликвидацию пожара.
Обычно, при рассмотрении вопросов, связанных с возникновением и прекращением горения используют понятие «классического треугольника горения». Суть его сводится к тому, что процесс горения возникает и развивается когда во времени и пространстве сходятся: горючее вещество, источник зажигания и окислитель (рис. 1). Если разорвать любую связь или исключить один из элементов данной схемы горение станет невозможным.
Рис. 1. - Схема «классического треугольника горения»
Пламенное горение на пожаре является диффузионным, т.е. газообразное горючее непрерывно поступает в зону горения, смешивается с газообразным окислителем и воспламеняется от источника зажигания. На пожаре таким непрерывно действующим источником зажигания является само пламя. Следовательно, ликвидация факела пламени означает исключение из треугольника пожара одного угла - источника зажигания и является условием необходимым для прекращения горения. Однако выполнение только этого условия не всегда достаточно для тушения пожара. Так, при горении многих твердых материалов (древесностружечных плит, древесины и т.д.) температура поверхности составляет 60 (Н700°С, что вполне достаточно для зажигания выделяющихся газообразных продуктов пиролиза и в отсутствие пламени. В таких случаях достаточным условием для тушения пожара является прекращение поступления горючих газов в зону горения, т.е. ликвидация еще одного угла треугольника пожара - горючего вещества.
Наиболее распространенной и наиболее научно обоснованной теорией прекращения процессов горения является тепловая теория потухания пламени. Суть ее сводится к тому, что в результате нарушения теплового равновесия в зоне химических реакций горения при определенных условиях самопроизвольное и непрерывное протекание этих реакций становится невозможным и процесс горения прекращается. Это происходит тогда, когда температура в зоне горения снижается до некоторого критического значения. В результате анализа параметров горения предварительно неперемешанных газов в зависимости от интенсивности подачи горючих компонентов в зону реакции Я.Б. Зельдович получил максимально возможную величину снижения температуры пламени:
(1)
Согласно тепловой теории потухания задача прекращения пламенного горения сводится к снижению температуры в зоне химических реакций до температуры потухания. Это достигается путем нарушения теплового равновесия в зоне протекания химических реакций горения, т.е. нарушения баланса процессов тепловыделения и теплоотвода.
Согласно тепловой теории потухания прекращение горения наступает в результате понижения температуры пламени до некоторой критической величины, называемой температурой потухания Тпот. Это достигается путем увеличения интенсивности теплоотвода из зоны горения и (или) уменьшением интенсивности тепловыделения за счет снижения скорости реакции горения.
Рис. 2. - Зависимость скорости тепловыделения q1 и теплоотвода q2 от температуры Т
Графики зависимостей q1и q2 от температуры показаны на рис. 2.
Проекция точки пересечения графиков на ось абсцисс соответствует температуре диффузионного пламени Тв. Очевидно, что в этой точке q1= q2 процесс горения является устойчивым.
Рассмотрим причину устойчивости. Допустим, что в силу каких-либо причин температура понизилась до Та, а законы тепловыделения и теплоотвода не изменились (т.е. взаимное расположение графиков q1и q2 осталось прежним). Видно, что в этом случае интенсивность тепловыделения станет больше интенсивности теплоотвода. Следовательно, система будет нагреваться более интенсивно, чем охлаждаться, и температура ее вернется к значению. Если, например, по инерции, температура повысится до То , интенсивность охлаждения (q1) станет больше интенсивности тепловыделения (q2). Соответственно температура начнет понижаться. Из всего сказанного следует, что для прекращения процесса горения недостаточно изменить только температуру, необходимо изменить параметры процессов тепловыделения и (или) теплоотвода.
