Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
informatika_kontrolnaya.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
168.38 Кб
Скачать

СОДЕРЖАНИЕ

2. Измерение информации 4

3. Информационные процессы 9

4. Кодирование информации 12

5. Принцип программного управления ЭВМ 17

6. Понятия архитектуры, организации и реализации ЭВМ 20

7. Организация аппаратных средств ЭВМ 21

8. Информационная модель ЭВМ 24

9. Классификация ЭВМ 26

10. Персональные компьютеры 29

11. Информационно - логические основы построения персональных компонентов 32

12. Функционально – структурная организация ЭВМ 35

13. Классы программных продуктов 38

14. Системное программное обеспечение 40

15. Сетевые операционные системы 44

16. Инструментарий технологии программирования 47

17. Локальные средства разработки программ 49

18. CASE технология разработки сисо 50

19. Пакеты прикладных программ 51

20. Этапы разрешения задач на алгоритмы 55

21. Языки программирования 58

22. Базы данных 60

23. Компьютерная сеть 62

24. Сетевое оборудование 66

25. Глобальная компьютерная сеть Интернет 69

26. Защита информации 71

27. Компьютерные вирусы 74

28. Технические, организационные и программные средства. Обеспечение сохранности и защита от несанкционированного доступа 78

Информация — это продукт взаимодействия данных и адекватных им методов. Информация является динамическим объектом, образующимся в момент взаимодействия объективных данных и субъективных методов.

Информация в переводе с латинского языка означает: разъяснение, изложение чего-либо или сведения о чём-либо.

Виды информации:

  • текстовая;

  • числовая;  

  • графическая;

  • звуковая;  

  • световая;  

  • электромагнитная (информация электромагнитных волн).

Свойства информации.

Информация выступает как свойство объектов и явлений (процессов) порождать многообразие состояний, которые посредством отражения передаются от одного объекта к другому и запечатлеются в его структуре (возможно, в измененном виде).

Целевая функция информации характеризуется способностью влиять на процессы управления, на соответствующее целям управления поведением людей. В этом, по существу, и состоит полезность или ценность информации.

Информация охватывает все сферы, все отрасли общественной жизни, прочно входит в жизнь каждого человека, воздействует на его образ мышления и поведение. Она обслуживает общение людей, социальных групп, классов, наций и государств, помогает людям овладеть научным мировоззрением, разбираться в многообразных явлениях и процессах общественной жизни, повышать уровень своей культуры и образованности, усваивать и соблюдать законы и нравственные принципы. Огромную, ничем незаменимую роль выполнят информация в управленческой деятельности. По существу, без информации не может быть и речи о любом виде управления, о целенаправленной деятельности взаимосвязанных объектов и систем.

Объективность и субъективность информации.

Понятие объективности информации является относительным. Это понятно, если учесть, что методы являются субъективными. Более объективной принято считать ту информацию, в которую методы вносят меньший субъективный элемент. В результате наблюдения фотоснимка природного объекта или явления образуется более объективная информация, чем в результате наблюдения рисунка того же объекта, выполненного человеком. Полнота информации. Полнота информации во многом характеризует качество информации и определяет достаточность данных для принятия решений или для создания новых данных на основе имеющихся. Достоверность информации. Данные возникают в момент регистрации сигналов, но не все сигналы являются «полезными» — всегда присутствует какой-то уровень посторонних сигналов, в результате чего полезные данные сопровождаются определенным уровнем «информационного шума». Если полезный сигнал зарегистрирован более четко, чем посторонние сигналы, достоверность информации может быть более высокой. Адекватность информации — это степень соответствия реальному объективному состоянию дела. Неадекватная информация может образовываться при создании новой информации на основе неполных или недостоверных данных. Актуальность информации — это степень соответствия информации текущему моменту времени. Нередко с актуальностью связывают коммерческую ценность информации.

2. Измерение информации

Подходы к измерению информации

В содержательном подходе возможна качественная оценка информации: новая, срочная, важная и т.д. информативность сообщения характеризуется содержащейся в нем полезной информацией - той частью сообщения, которая снимает полностью или уменьшает неопределенность какой-либо ситуации.       

Содержательный подход часто называют субъективным, так как разные люди информацию об одном и том же предмете оценивают по-разному.     

Алфавитный подход основан на том, что всякое сообщение можно закодировать с помощью конечной последовательности символов некоторого алфавита. носителями информации являются любые последовательности символов, которые хранятся, передаются и обрабатываются с помощью компьютера. информативность последовательности символов не зависит от содержания сообщения, а определяется минимально необходимым количеством символов для ее кодирования. Алфавитный подход является объективным, он не зависит от субъекта, воспринимающего сообщение.

Единицы измерения информации

Единица измерения информации называется бит (bit) - сокращение от английских слов binarydigit, что означает двоичная цифра.     

В компьютерной технике бит соответствует физическому состоянию носителя информации: намагничено - не намагничено. При этом одно состояние принято обозначать цифрой 0, а другое - цифрой 1. Выбор одного из двух возможных вариантов позволяет также различать логические истину и ложь. Последовательностью битов можно закодировать текст, изображение, звук или какую-либо другую информацию. Такой метод представления информации называется двоичным кодированием (binaryencoding).      

В информатике часто используется величина, называемая байтом (byte) и равная 8 битам. И если бит позволяет выбрать один вариант из двух возможных, то байт, соответственно, 1 из 256 (28). В большинстве современных ЭВМ при кодировании каждому символу соответствует своя последовательность из восьми нулей и единиц, т. е. байт.     

Наряду с байтами для измерения количества информации используются более крупные единицы:     

1 Кбайт (один килобайт) = 210 байт = 1024 байта;    

1 Мбайт (один мегабайт) = 210 Кбайт = 1024 Кбайта; 

1 Гбайт (один гигабайт) = 210 Мбайт = 1024 Мбайта.

В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:    

   1 Терабайт (Тб) = 1024 Гбайта = 240 байта, 

     1 Петабайт (Пб) = 1024 Тбайта = 250 байта.     

  Рассмотрим, как можно подсчитать количество информации в сообщении, используя содержательный подход.      

Пусть в некотором сообщении содержатся сведения о том, что произошло одно из N равновероятных событий. Тогда количество информации х, заключенное в этом сообщении, и число событий N связаны формулой: 2x = N. Решение такого уравнения с неизвестной х имеет вид: x=log2N. То есть именно такое количество информации необходимо для устранения неопределенности из N равнозначных вариантов. Эта формула носит название формулы Хартли. Получена она в 1928 г. американским инженером Р. Хартли.

При алфавитном подходе, если допустить, что все символы алфавита встречаются в тексте с одинаковой частотой, то количество информации, которое несет каждый символ (информационный вес одного символа), вычисляется по формуле:x=log2N, где N - мощность алфавита (полное количество символов, составляющих алфавит выбранного кодирования).

Вероятностный подход к измерению информации

Формулу для вычисления количества информации, учитывающую неодинаковую вероятность событий, предложил К. Шеннон в 1948 году. Количественная зависимость между вероятностью события р и количеством информации в сообщении о нем выражается формулой: x=log2 (1/p). Чем меньше вероятность некоторого события, тем больше информации содержит сообщение об этом событии.       

Представление информации в компьютере, единицы измерения информации

В ЭВМ применяется двоичная система счисления, т.е. все числа в компьютере представляются с помощью нулей и единиц, поэтому компьютер может обрабатывать только информацию, представленную в цифровой форме.

Код — это набор условных обозначений (или сигналов) для записи (или передачи) некоторых заранее определенных понятий. Обычно каждый образ при кодировании (иногда говорят — шифровке) представлении отдельным знаком.

Знак - это элемент конечного множества отличных друг от друга элементов. Знак вместе с его смыслом называют символом.

Набор знаков, в котором определен их порядок, называется алфавитом. Существует множество алфавитов:

Шифрование - кодирование сообщения отправителя, но такое чтобы оно было не понятно несанкционированному пользователю.

Длиной кода называется такое количество знаков, которое используется при кодировании.

Для преобразования числовой, текстовой, графической, звуковой информации в цифровую необходимо применить кодирование.

Кодирование – это преобразование данных одного типа через данные другого типа.

Таким образом, единицей информации в компьютере является один бит, т.е. двоичный разряд, который может принимать значение 0 или 1. Восемь последовательных бит составляют байт. В одном байте можно закодировать значение одного символа из 256 возможных (256 = 2 в степени 8). Более крупной единицей информации является килобайт (Кбайт), равный 1024 байтам (1024 = 2 в степени 10). Еще более крупные единицы измерения данных: мегабайт, гигабайт, терабайт (1 Мбайт = 1024 Кбайт; 1 Гбайт = 1024 Мбайт; 1 Тбайт = 1024 Гбайт).

Целые числа кодируются двоичным кодом довольно просто (путем деления числа на два). Для кодирования нечисловой информации используется следующий алгоритм: все возможные значения кодируемой информации нумеруются и эти номера кодируются с помощью двоичного кода.

Для кодирования графических данных применяется, например, такой метод кодирования как растр. Координаты точек и их свойства описываются с помощью целых чисел, которые кодируются с помощью двоичного кода. Так черно-белые графические объекты могут быть описаны комбинацией точек с 256 градациями серого цвета, т.е. для кодирования яркости любой точки достаточно 8 - разрядного двоичного числа.

Режим представления цветной графики в системе RGB с использованием 24 разрядов  называется полноцветным. Для поноцветного режима в системе CMYK необходимо иметь 32 разряда.

Одно и то же сообщение можно закодировать разными способами, т. е. выразить на разных языках. В процессе развития человеческого общества люди выработали большое число языков кодирования. К ним относятся:  

  • разговорные языки (русский, английский, хинди и др. — всего более 2000);  

  • язык мимики и жестов;  язык рисунков и чертежей;

  • язык науки (математические, химические, биологические и другие символы);  

  • язык искусства (музыки, живописи, скульптуры и т. д.);  

  • специальные языки (эсперанто, морской семафор, азбука Морзе, азбука Брайля для слепых и др.).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]