- •Методические указания
- •«Металлургия меди и никеля»
- •5В070900 – Металлургия
- •Шымкент 2016
- •Составитель: Сейсенбаев а.Е. - к.Т.Н.
- •Содержание
- •Введение
- •Лабораторная работа №1 влияние концентрации кислорода в дутье на показатели окислительного обжига сульфидного медного концентрата
- •2. Краткие теоретические сведения
- •3. Оборудование, технические инструментальные средства:
- •Описание установки
- •5. Порядок выполнения работы
- •Пример расчета
- •Контрольные вопросы
- •Лабораторная работа №2 плавка медных концентратов на штейн
- •2. Краткие теоретические сведения
- •3. Оборудование, технические инструментальные средства:
- •Описание установки
- •Электропечь, 2 – тигель с шихтой, 3 – термопара
- •5. Порядок выполнения работы
- •6. Пример расчета
- •Плавка огарка без конверторного шлака
- •Плавка огарка с конвертерным шлаком
- •7. Контрольные вопросы
- •Лабораторная работа №3 конвертирование медных штейнов
- •1. Цель и задачи:
- •2. Краткие теоретические сведения
- •3. Оборудование, технические инструментальные средства:
- •Описание установки
- •5. Порядок выполнения работы
- •6. Пример расчета
- •7. Контрольные вопросы
- •Лабораторная работа №4 электролитическое рафинирование меди
- •1. Цель и задачи:
- •2. Краткие теоретические сведения
- •3. Оборудование, технические инструментальные средства:
- •Описание установки
- •5. Порядок проведения работы
- •6. Пример расчета
- •7. Контрольные вопросы
- •Лабораторная работа №5 регенерация электролита с получением медного купороса
- •1. Цель и задачи:
- •2. Краткие теоретические сведения
- •3. Оборудование, технические инструментальные средства:
- •4. Описание установки
- •5. Порядок проведения работы
- •6. Пример расчета
- •7. Контрольные вопросы
- •Лабораторная работа №6 гидрометаллургическая переработка окисленного медного сырья
- •1. Цель и задачи:
- •2. Краткие теоретические сведения
- •3. Оборудование, технические инструментальные средства:
- •4. Описание установки
- •5. Порядок проведения работы
- •6. Пример расчета
- •7. Контрольные вопросы
- •Техника безопасности при работе в лаборатории
- •Сейсенбаев а.Е. Методические указания
Лабораторная работа №6 гидрометаллургическая переработка окисленного медного сырья
1. Цель и задачи:
Воспроизвести в лабораторных условиях процесс гидрометаллургического извлечения меди из окисленного медного сырья.
2. Краткие теоретические сведения
Гидрометаллургические способы получения меди в принципе пригодны для переработки любых видов рудного сырья. Однако их обычно используют для извлечения меди из окисленных руд или предварительно обожженных сульфидных руд. Доля гидрометаллургических процессов в общем производстве меди за рубежом постоянно возрастает и составляет сейчас - 12... 15 %. В СНГ эти способы пока почти не применяют; лишь небольшое количество меди извлекается выщелачиванием вскрышных пород в отвалах (кучах) и забалансовых руд.
Ограниченное применение гидрометаллургических способов в медной промышленности является следствием в основном малых запасов окисленных руд и сложности попутного извлечения золота и серебра. По этой причине гидрометаллургию используют главным образом для переработки бедных руд с нерентабельным содержанием благородных металлов, пустая порода которых не вступает в химическое взаимодействие с растворителем. Для практической выгодности гидрометаллургии необходимо также, чтобы медь находилась в форме легкорастворимого соединения или переводилась в растворимую форму без значительных затрат.
Любой гидрометаллургический способ, не считая подготовительных и вспомогательных операций, состоит из двух основных стадий: обработки рудного сырья растворителем (выщелачивание) и осаждения металла из раствора.
При выборе растворителя учитывается ряд требований. Основными из них являются дешевизна и доступность растворителя, эффективность его воздействия на компоненты руды, незначительное воздействие на минералы пустой породы и возможность его регенерации. Применительно к медному сырью этим требованиям в наибольшей степени удовлетворяют вода и растворы серной кислоты и сульфата трехвалентного железа.
Вода - наиболее дешевый и доступный растворитель - пригодна, как правило, для обработки сырья и полупродуктов, содержащих медь в форме сульфатов или хлоридов. В условиях естественного (природного) выщелачивания сульфидных минералов при совместном действии воды и кислорода воздуха происходит окисление сульфидов с образованием серной кислоты и сульфата трехвалентного железа, которые и растворяют в конечном итоге сульфиды.
Раствор серной кислоты - наиболее распространенный растворитель в гидрометаллургии меди. Он обладает достаточно высокой растворяющей способностью, дешев и легко регенерируется. Однако его невыгодно применять для сырья с повышенным содержанием основных породообразующих минералов (известняка, кальцита, доломита и т.д.) из-за резкого увеличения расхода растворителя на их растворение и невозможности регенерации H2S04 из сульфатов кальция и магния.
Сульфат трехвалентного железа является хорошим растворителем для многих природных сульфидов меди. Однако этот растворитель самостоятельного значения в гидрометаллургии меди не имеет. Причиной этому является гидролиз Fe2(S04)3 в водных растворах. Для придания устойчивости сульфату растворы нужно подкислять серной кислотой.
При совместном воздействии указанных двух реагентов на сульфидные минералы Fe2(S04)3 работает как окислитель сульфидов, а серная кислота является их фактическим растворителем. Сульфат трехвалентного железа при этом восстанавливается до FeS04. Регенерацию растворителя осуществляют путем окисления FeS04 до Fe2(S04)3 аэрацией (продувкой) воздухом, часто в присутствии определенного вида бактерий (бактериальное выщелачивание) и реже хлором.
Для выщелачивания медных руд и концентратов применяют несколько методов: выщелачивание в кучах; подземное выщелачивание; выщелачивание путем просачивания раствора через слой рудного материала (перколяция); выщелачивание в чанах с механическим перемешиванием (агитация); автоклавное выщелачивание (под давлением).
В отечественной металлургии меди нашли применение только первые два метода.
Кучное выщелачивание применяют для извлечения меди на месте из вскрышных пород (отвалов) старых и новых карьеров и бедных крупнокусковых руд, содержащих 0,1…0,3 % Cu. Основным растворителем служит разбавленный кислый раствор Fe2(S04)3, образующийся при воздействии кислорода воздуха и воды на пирит:
2FeS2 + 2H2O + 7O2 = 2Fe2(S04)3 + 2H2S04;
4FeS04 + 2H2S04 + O2 = 2Fe2(S04)3 + 2H20;
CuFeS2 + 2Fe2(S04)3 + 2H20 + O2 = CuS04 + 2H2S04 + 5FeS04
При кучном выщелачивании кусковую руду в виде кучи объемом до 6000 тыс.т укладывают на водонепроницаемое основание с уклоном в одну сторону для сбора растворов в отстойниках.
Вода и оборотные растворы после выделения меди периодически подаются на орошение кучи сверху и медленно протекают через нее на основание, растворяя медь. Полученные растворы содержат 0,3 … 3,0 г/л Cu.
Выщелачивание в кучах при незначительных капитальных и эксплуатационных затратах позволяет обрабатывать огромные массы забалансового сырья. Этот метод используется для извлечения меди из карьерных отвалов.
Существуют также подземное (для извлечения меди из отработанных или законсервированных шахт) и бактериальное выщелачивание.
Выделение меди из бедных растворов вышеуказанных способов выщелачивания можно методами цементации, сорбции и экстракции.
Цементация меди производится за счет вытеснения ее из раствора электроотрицательным металлом:
CuS04+Me = Cu + MeS04
В качестве промышленного осадителя меди используют материалы на основе железа - железный лом, стружку, обреэь жести, обезлуженную консервную жесть, губчатое (пористое) железо и т.д. в связи с их достаточной активностью, доступностью и невысокой стоимостью.
В современной практике цементации меди наибольшее распространение получили цементационные желоба, вращающиеся барабаны и чаны с механическим перемешиванием.
Основной продукт цементации - цементную медь - отправляют для дальнейшей переработки на медеплавильные заводы. Она содержит 65... 75 % Си, а остальное - в основном железо. Отработанные растворы с содержанием - 0,05 г/л Си направляют на выщелачивание. Извлечение меди при цементации составляет 90... 98 %. Расход железа на цементацию I т меди колеблется от 1,5 до 2,5 т.
Основными недостатками цементационного осаждения меди являются: необходимость расходования серной кислоты при регенерации оборотных растворов, содержащих FeS04; необходимость дополнительной очистки (переработки) получающейся цементной меди для получения товарного продукта.
Экстракцию меди из бедных растворов органическими растворителями успешно используют на нескольких заводах в США и Африке. При экстракционном способе предусматривается в стадии реэкстракции органической фазы получение медного раствора, содержащего до 90 г/л Си. Такой раствор может быть переработан методом электролиза с получением чистой катодной меди или автоклавным способом на медный порошок.
Разработаны также сорбционные процессы для извлечения меди из окисленных медных руд и растворов после кучного или подземного выщелачивания с использованием ионообменных материалов, которые также позволяют получать медь в виде катодов или порошков.
