Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Sistemny_analiz_statya_lektsia.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
458.18 Кб
Скачать

4.4.4. Проверка моделей систем

Модель системы необходимо проверять (испытывать) постоянно с момента её создания до получения требуемого результата. До начала эксперимента модель необходимо испытать в целом, что является последним этапом разработки модели. Такое испытание проводится с целью:

  • выявления правдоподобия модели в первом приближении, «качественно», чтобы убедиться, что модель ведёт себя, как и предполагалось, то есть существует качественное соответствие между поведением моделируемой системы и модели, в том числе совпадают порядок их исходов, а также поведение и результаты в «крайних» ситуациях;

  • проверки количественной адекватности — точности преобразования информации, что достигается калибровкой модели.

Калибровкой модели называется определение (уточнение) коэффициентов модели — коэффициентов отношений, связывающих экзогенные и эндогенные переменные модели. Калибровка осуществляется путём сравнения результатов, полученных на моделях, с результатами, получаемыми при испытаниях реальной системы, или с результатами аналитических расчётов, для чего используются эталонные примеры и задачи. Модель системы в целом проверяется так называемыми эталонными задачами, охватывающими все свойства модели. Однако целесообразно структурировать задачу — построить такую совокупность примеров, чтобы с помощью одного примера охватить только какую-то часть модельных зависимостей и определить часть коэффициентов.

Одной из задач испытания является проверка модели на чувствительность, то есть насколько исходы модели чувствительны к изменению входных переменных.

В общем случае испытание и калибровка модели — задача статистическая, то есть задача проблемного анализа — формирования статистически значимых выводов на основе данных, полученных на модели. При испытаниях широко применяются такие статистические методы, как регрессионный, корреляционный и дисперсионный анализы. Важно учитывать, что статистические методы могут привести к неверным результатам, если исследователь не имеет ясного представления о моделируемой системе и характеристиках используемой информации.

Для обеспечения адекватности модели предусматриваются при её разработке и эксплуатации следующие виды контроля:

  • контроль размерностей: сравниваться и складываться могут только величины одинаковой размерности;

  • контроль порядков: выделение основных и уточняющих слагаемых;

  • контроль характера зависимостей между переменными: выявление качественного совпадения вида модельных зависимостей с видом аналогичных зависимостей в реальной системе;

  • контроль экстремальных ситуаций: в подобных ситуациях поведение модели должно совпадать с поведением системы в аналогичных ситуациях (поведение системы в экстремальных ситуациях часто легко оценивается);

  • контроль граничных условий: на границе функции должны принимать определённые значения;

  • контроль математической замкнутости: выяснение имеет ли задача решение в том виде как она записана в модели;

  • контроль устойчивости модели;

  • контроль соответствия значений переменных их физическому смыслу: знаки и величины переменных модели не должны противоречить возможным значениям моделируемых физических величин.

Поскольку испытания моделей сложных систем связаны с существенными затратами, необходимо к планированию испытаний относиться предельно строго. Результаты испытаний, в конечном счёте, должны обеспечить необходимый уровень адекватности модели на всех этапах её использования. При обоснованном выборе тестовых примеров и эталонных задач эта задача решается при минимальных затратах средств и ресурсов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]