Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
муза.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
194.79 Кб
Скачать

13. Мультиплексоры.

Mультипле́ксор — устройство, имеющее несколько сигнальных входов, один или более управляющих входов и один выход. Мультиплексор позволяет передавать сигнал с одного из входов на выход; при этом выбор желаемого входа осуществляется подачей соответствующей комбинации управляющих сигналов.

Аналоговые и цифровые[1][2] мультиплексоры значительно различаются по принципу работы. Первые электрически соединяют выбранный вход с выходом (при этом сопротивление между ними невелико — порядка единиц/десятков ом). Вторые же не образуют прямого электрического соединения между выбранным входом и выходом, а лишь «копируют» на выход логический уровень ('0' или '1') с выбранного входа. Аналоговые мультиплексоры иногда называют ключами[3] или коммутаторами.

Устройство, противоположное мультиплексору по своей функции, называется демультиплексором. В случае применения аналоговых мультиплексоров (с применением ключей на полевых транзисторах) не существует различия между мультиплексором и демультиплексором; такие устройства могут называться коммутаторами.

14.Аналоговые коммутаторы.

Аналоговый коммутатор служит для переключения непрерывно изменяющихся электрических сигналов. Если коммутатор находится в состоянии «включено», его выходное напряжение должно по возможности точно равняться входному; если же коммутатор находится в состоянии «выключено», выходное напряжение должно быть как можно ближе к нулю или, во всяком случае, должно как можно меньше зависеть от входного напряжения.

 Существуют различные схемные решения коммутаторов, удовлетворяющие указанным условиям. Их принцип действия показан на примере механических (контактных) переключателей (рис. 3.9).

В последовательном коммутаторе (рис. 3.9, а) пока контакт замкнут, UВЫХ = UВХ. Когда контакт размыкается, выходное напряжение становится равным нулю. Все это справедливо, если источник сигнала имеет нулевое выходное сопротивление, и емкость нагрузки равна нулю. При значительном выходном сопротивлении источника сигнала напряжение UВЫХ делится между этим сопротивлением и резистором R. Поэтому эту схему не следует применять в случае, если источником сигнала является источник тока, например, фотодиод. При существенной емкости нагрузки во время разряда этой емкости при размыкании ключа S выходное напряжение коммутатора снижается до нуля довольно долго.

В схеме параллельного коммутатора (рис. 3.9, б) UВЫХ = UВХ при разомкнутом ключе, если входное сопротивление нагрузки коммутатора бесконечно велико. Если же оно соизмеримо с сопротивлением резистора R, то на резисторе будет падать часть выходного напряжения источника сигнала. При наличии емкостной нагрузки будет относительно медленно устанавливаться выходное напряжение после размыкания ключа.

Последовательно-параллельный коммутатор (рис. 3.9, в) не имеет недостатков двух предыдущих схем (см. рис. 3.9, а, б). В любом рабочем состоянии он имеет выходное сопротивление, близкое к нулю.

15.Аналого-цифровой преобразователь

Аналого-цифровой преобразователь (АЦП, Analog-to-digitalconverter, ADC) — устройство, преобразующее входной аналоговый сигнал в цифровой сигнал (в цифровой двоичный код). Для задач измерения значения сигнала в произвольный момент времени используют асинхронный режим работы с АЦП с жестко не привязанными по времени одиночными аналого-цифровыми преобразованиями. Для задач измерения функциональной зависимости изменения аналогового сигнала используют синхронный режим работы АЦП. Синхронный режим работы АЦП без пропусков данных на сколь угодно большом интервале времени называют также потоковым режимом. Синхронные АЦП, как правило, поддерживают покадровый принцип сбора данных, когда оцифрованные отчёты измерения образуют условные кадры с заданным количеством отсчётов, соответствующих заданным каналам измерения.

Основные параметры АЦП:

  • Входной диапазон сигнала (диапазон измерения).

  • Частота преобразования [Гц] – частота следования аналого-цифровых преобразований. В терминологии ЦОС частота преобразования АЦП называется частотой дискретизации сигнала в его цифровом представлении.

  • Период преобразования [c] = [1/Гц] – величина, обратная частоте преобразования. В терминологии ЦОС период преобразования АЦП является периодом преобразования сигнала в его цифровом представлении. Для асинхронных АЦП нормируется время преобразования.

  • Полоса частот пропускания АЦП [Гц]…[Гц]. Это диапазон частот сигнала, который пропускает преобразователь по уровню сигнала -3 дБ.

  • Разрядность АЦП – количество N двоичных разрядов преобразователя, при этом количество уровней квантования сигнала в цифровом представлении АЦП равно 2N.

  • Соотношение сигнал/шум канала преобразования АЦП [дБ]

  • Технология АЦП. Типичные представители: АЦП последовательного приближения, сигма-дельта АЦП.

  • Межканальное прохождение [дБ].

Верхняя частота полосы частот пропускания АЦП последовательного приближения может быть значительно больше частоты преобразования АЦП, а верхняя частота полосы частот пропускания сигма-дельта АЦП не превышает половины частота преобразования АЦП.

АЦП различаются типами входов. Чаще встречаются АЦП с входом напряжения, реже – с входом тока или входом заряда.

АЦП с коммутацией каналов разделяются на АЦП с входным коммутатором каналов (у которых коммутационный процесс происходит непосредственно в измерительной цепи) и на АЦП с внутренним коммутатором, например, как у E20-10  (у которых коммутационный процесс происходит внутри и измерительную цепь не затрагивает).

Важной характеристикой АЦП является наличие гальванической изоляции входной сигнальной цепи. Для АЦП с входом напряжения важной характеристикой является тип входа напряжения: дифференциальный входвход с общей землёй.

По потребительским свойствам все АЦП можно разделить на АЦП общего применения и специализированные АЦП.  Для общего применения больше всего подходят АЦП, имеющие дифференциальный вход и гальваноразвязку. К специализированным АЦП можно отнести преобразователи, имеющие специальный вход, адаптированный под конкретный датчик (например, тензометрический, как у LTR212).

В особую группу можно выделить АЦП на основе преобразователей "напряжение-частота" для измерения постоянного или медленно меняющегося напряжения или тока (например, H-27x).

АЦП является неотъемлемой частью системы сбора данных.

16 ЦАП

Цифро-аналоговый преобразователь (ЦАП) предназначен для преобразования числа, определенного, как правило, в виде двоичного кода, в напряжение или ток, пропорциональные значению цифрового кода. Схемотехника цифро-аналоговых преобразователей весьма разнообразна. На рис. 1 представлена классификационная схема ЦАП по схемотехническим признакам. Кроме этого, ИМС цифро-аналоговых преобразователей классифицируются по следующим признакам:

По виду выходного сигнала: с токовым выходом и выходом в виде напряжения.

По типу цифрового интерфейса: с последовательным вводом и с параллельным вводом входного кода.

По числу ЦАП на кристалле: одноканальные и многоканальные.

По быстродействию: умеренного и высокого быстродействия.

ПРИМЕНЕНИЕ ЦАП

Схемы применения цифро-аналоговых преобразователей относятся не только к области преобразования код - аналог. Пользуясь их свойствами можно определять произведения двух или более сигналов, строить делители функций, аналоговые звенья, управляемые от микроконтроллеров, такие как аттенюаторы, интеграторы. Важной областью применения ЦАП являются также генераторы сигналов, в том числе сигналов произвольной формы. Ниже рассмотрены некоторые схемы обработки сигналов, включающие ЦА-преобразователи.