- •1 Технология сахарных сиропов. Получение белого и инвертированного сахарного сиропа.
- •2 Технологическая схема получения чайных и кофейных безалкогольных напитков.
- •3 Способы приготовления купажа напитка. Последовательность внесения компонентов. Повышение стойкости напитков.
- •4. Получение растворимого кофе. Параметры процесса, характеристика продукта.
- •5. Получение растворимого чая. Параметры процесса, характеристика продукта.
- •6. Производство чайных концентратов, прессованного и растворимого чаев.
- •7. Классическая технология производства черного чая. Горячее скручивание и термическая обработка чайного листа.
- •8. Производство прессованных чаев, виды и состав компонентов чая.
- •9. Классическая технология зеленого чая. Фасование и упаковка чая; утилизация чайных отходов.
- •10. Современная технология кофейных напитков, кофепродуктов (кофезаменителей - цикория и др.)
- •11. Технология кофе натурального растворимого.
- •12. Современная технология обжарки кофе и ее значение для качества продукта.
- •Технология сублимационной сушки кофейного экстракта.
- •Технология первичной переработки кофе, вкусовые отличия сорта робуста и арабика. Их влияние на вкус кофе.
- •15.Технология кальянного табака.
- •16. Получение взорванной жилки. Особенности резки центральной жилки табачного листа, влияние параметров реза на качество табачных изделий.
- •18.Строение, химический состав и технологические качества сахарной свёклы. Требования к качеству корнеплодов свёклы. Получение свекловичной стружки. Требования к её качеству
- •Процесс диффузии. Теория Фика применительно к обессахариванию стружки. Факторы, влияющие на процесс диффузии.
- •Преддефекация и её роль в очистке диффузионного сока. Оптимальная и прогрессивная преддефекация. Оборудование для её проведения.
- •I и II сатурация: химизм процесса, оптимальные значения щёлочности и рН, влияние различных факторов на процесс
- •Получение жжёной извести и известкового молока. Факторы, влияющие на качество получаемого известкового молока и методы оценки его качества.
- •Многокорпусное выпаривание. Режимы выпаривания при переработке свёклы различного качества.
- •Растворимость сахарозы в чистых и технических растворах. Коэффициенты насыщения и пересыщения. Видимый и истинный коэффициент пересыщения.
- •Основные стадии и различия уваривания утфелей 1, 2, 3 ступеней кристаллизации. Основные этапы уваривания утфелей.
- •Аффинация и клерование. Основные понятия и определения, цель и условия применения этих операций на сахарном заводе.
- •Теория кристаллизации сахарозы и влияние отдельных факторов на скорость роста кристаллов.
- •28. Требования к качеству сахара-песка и сахара-рафинада. Сопоставление вариантов кристаллизационных схем и их влияние на качество готовой продукции.
- •29. Характеристика крахмала.
- •31. Химические свойства крахмала:реакция с йодом, гидролиз.
- •32. Набухание, клейстеризация и ретроградация крахмала.
- •33. Кукуруза. Основные сведения.
- •34. Строение кукурузы. Количественные соотношения частей зерна кукурузы.
- •35. Химический состав зерна кукурузы.
- •36. Свойство кукурузы:скважистость зерна и початков, угол естественного откоса, объемная масса, влажность.
- •37. Хранение кукурузы в зерне и початках.
- •38. Обмолот початков. Требования к качеству кукурузы. Количество сорной и зерновой примеси.
- •39. Принципиальная технологическая схема производства сырого кукурузного крахмала.
- •40.Схема открытого и замкнутого процессов переработки зерна кукурузы.
- •41.Цель замачивания зерна кукурузы. Теоретические основы процесса замачивания кукурузного зерна.
- •42.Процессы, происходящие при замачивании зерна. Набухание, изменение химического состава зерна в процессе замачивания.
- •44.Принципиальная схема производства крахмальной патоки.
- •45.Гидролиз крахмала в конверторе. Устройство и режим работы. Технологические показатели.
- •46.Способы получения энергии биологическими объектами.
- •47.Виды брожения, их основные конечные продукты.
- •48.Сырье спиртового производства и его основные технологические характеристики.
- •49.Требования, предъявляемые к питательным средам бродильных производств.
- •50.Получение этилового спирта из зернового сырья: основные технологические стадии.
- •51.Основные качественные показатели пищевого этилового спирта.
- •52.Факторы, влияющие на развитие микробной популяции.
- •53.Перегонка и брагоректификация в производстве этилового спирта.
- •54.Факторы, влияющие на протекание процесса спиртового брожения.
- •55.Строение основных видов зерновых культур (пшеница, рожь, ячмень, овес, просо и т.Д.), картофеля.
- •56.Факторы, влияющие на жизнедеятельность дрожжей.
- •57.Виды некрахмалистого сырья спиртового производства.
- •58.Ячмень, как сырье для пивоваренного производства. Требования к качеству пивоваренного ячменя.
- •59.Приемка, очистка, сортирование и хранение зернового сырья в производстве солода. Технологическая схема.
- •60.Способы замачивания ячменя. Перезамачивание.
- •61.Факторы, влияющие на скорость замачивания.
- •62.Токовое и пневматическое солодоращение.
- •63.Конструкции пневматических солодовен.
- •65. Сушка темного солода.
- •66.Требования к пивоваренному ячменному солоду.
- •67,68.Продукция слабоалкогольного и безалкогольного производства.
- •69.Производство безалкогольных напитков: основные технологические стадии
- •70. Классификация квасов в соответствии с действующим гост
- •71. Производство кваса: основные технологические стадии. Способы получения квасного сусла
- •72. Производство пива: основные технологические стадии и режимы.
- •73.Приготовление пивного сусла. Способы затирания.
- •74. Процессы, происходящие при кипячении сусла с хмелем.
- •75. Главное брожение, дображивание и созревание пива
31. Химические свойства крахмала:реакция с йодом, гидролиз.
Реакция с йодом
Характерной качественной реакцией на крахмал является его реакция с йодом (йодкрахмальная реакция):
При взаимодействии йода с крахмалом образуется соединение включения (клатрат) канального типа. Клатрат – это комплексное соединение, в котором частицы одного вещества («молекулы-гости») внедряются в кристаллическую структуру «молекул-хозяев». В роли «молекул-хозяев» выступают молекулы амилозы, а «гостями» являются молекулы йода. Молекулы йода располагаются в канале спирали диаметром ~1 нм, создаваемой молекулой амилозы, в виде цепей ×××I×××I×××I×××I×××I×××. Попадая в спираль, молекулы йода испытывают сильное влияние со стороны своего окружения (ОН-групп), в результате чего увеличивается длина связи I–I до 0,306 нм (в молекуле йода длина связи 0,267 нм). Причем эта длина едина для всех атомов йода в цепи. Данный процесс сопровождается изменением бурой окраски йода на сине-фиолетовую (lмакс 620–680 нм). Амилопектин, в отличие от амилозы, дает с йодом красно-фиолетовое окрашивание (lмакс 520–555 нм).
Гидролиз крахмала
Крахмал подвергается кислотному гидролизу, который протекает ступенчато и беспорядочно. При расщеплении он сначала превращается в полимеры с меньшей степенью полимеризации – декстрины, потом в дисахарид мальтозу, и в итоге – в глюкозу. Таким образом, получается целый набор сахаридов.
Крахмал гидролизуется ферментом a-амилазой (содержится в слюне и выделяется поджелудочной железой), расщепляющей беспорядочно a(1→4)-гликозидные связи. b-Амилаза (присутствует в солоде) действует на a(1→4)-гликозидные связи, начиная с невосстанавливающего терминального остатка глюкозы, и последовательно отщепляет от полимерной цепи молекулы дисахарида мальтозы. Глюкоамилаза (содержится в плесневых грибах), подобно двум другим амилазам, гидролизует a(1→4)-гликозидные связи, последовательно отщепляя остатки D-глюкозы, начиная от невосстанавливающего конца. Селективное расщепление a(1→6)-гликозидных связей амилопектина происходит a-1,6-глюкозидазами, например, изоамилазой или пуллуланазой.
Амилаза, выделенная из Bacillusmacerans, способна превращать крахмал в циклические продукты (циклодекстрины, декстрины Шардингера), в которых степень полимеризации равна 6–8, а остатки глюкоз связываются a(1→4)-гликозидными связями.
32. Набухание, клейстеризация и ретроградация крахмала.
Нагревание крахмала в присутствии воды вызывает его клейстеризацию, т.е. разрушение нативной (кристаллической) структуры крахмальных зерен, сопровождаемое набуханием.
Процесс клейстеризацииэндотермический . Способность крахмала к набуханию и клейстеризации важнейшее технологическое свойство крахмала, т.к. определяет консистенцию, объем и выход изделий из крахмалсодержащего сырья, зависит от условий нагревания (температуры, продолжительности) и соотношения продукт: вода (или крахмал : вода ), а также нативных свойств крахмала.
Нагревание малоконцентрированных суспензий крахмала ( 1%) до температуры около 55°С сопровождается небольшим обратимым поглощением зернами влаги без разрушения их нативной структуры. При дегидратации структура крахмальных зерен восстанавливается до исходного состояния.
При дальнейшем нагревании суспензии до 60 ͦ С и выше свойства крахмала изменяются необратимо – нативная структура крахмальных зерен нарушается, оптическая анизотропия исчезает. Крахмальное зерно сильно набухает, увеличиваясь в объеме в несколько раз (зерна кукурузного крахмала – на 300%). Диссоциированные молекулы горячей воды проникают внутрь крахмального зерна, разрыхляют упорядоченную структуру крахмальных полисахаридов. В «точке роста» в результате разрыва и ослабления некоторой части водородных связей между цепями крахмальных полисахаридов образуется полость или пузырек. Образование полости называется кавитацией. По мере повышения температуры исчезает и слоистость (частично – при 60°С) а затем – полностью). Но форма зерна сохраняется.
Вода, поступающая внутрь зерен, растворяет некоторое количество полисахаридов. Часть из них (амилоза) переходят из зерен в окружающую среду. Подобное изменение структуры крахмальных зерен часто определяют как первую стадию процесса клейстеризации, а температуру, при которой оно наблюдается, как температуру клейстеризации.
Вследствие прошедшей клейстеризации суспензия превращается в клейстер – дисперсию, состоящую из набухших крахмальных зерен и растворенных в воде полисахаридов (амилоза). Значительно возрастает вязкость системы.
Процесс этот идет в интервале температур от 55 до 30°С. Последующее нагревание системы (клейстера) влечет за собой более глубокое изменение нативной структуры зерен. Слоистое строение исчезает, объем резко увеличивается (до 1000%), что является следствием разрыва связей между макромолекулами полисахаридов и их гидратации. Часть полисахаридов растворяется и остается в подсети крахмального зерна, а часть (гл. образом амилоза) – диффундирует в окружающую среду. Вязкость клейстера значительно возрастает. Часто эту стадию клейстеризации крахмала определяют как вторую. Такое определение очень условно.
Нагревание клейстера картофельного крахмала до 95-98 ͦ С сопровождается разрушением набухших зерен и переходом содержимого в окружающую среду. Процесс идет тем интенсивнее, чем выше температура и длительнее нагрев. Считается, что вязкость клейстеров при нагревании объясняется не набуханием зерен крахмала, а свойствами извлекаемой из них водорастворимой фракции, образующей в растворе трехмерную сетку и удерживающую больше влаги, чем набухшие крахмальные зерна.
Ретроградация крахмала
Ретроградация – это типичная форма перехода растворенных крахмальных полисахаридов в нерастворимую форму в результате их агрегации при охлаждении и хранении продукции.
В кулинарных изделиях ретроградация вызывает ухудшение их качества. Крахмальный гель теряет эластичность, становится более плотным, жестким; происходит отделение влаги. В хлебобулочных изделиях это приводит к черствлению, в кашах и киселях – к расслоению системы с выделением влаги.
Объяснить ретроградацию можно неустойчивостью крахмальных полисахаридов в растворе, особенно амилозы. Если ретроградация идет без видимого образования осадка, то считается, что амилоза посредством водородных связей соединяется с амилопектином. Такой процесс обратим. Если же процесс идет как самоагрегация амилозы, то образуются нерастворимые комплексы.
Ретроградация амилозы протекает в несколько стадий: в начале произвольно скрученные спирали амилозных цепей вытягиваются, после этого они теряют гидратную оболочку и располагаются (ориентируются) рядом. Между гидроксильными группами, расположенными на близком расстоянии, возникают водородные связи, энергия которых покрывает расход энергии на две предыдущие стадии. Связывание таким образом большого числа молекул приводит к опалесценции раствора, а затем к образованию видимых хлопьев.
Ретроградация идет практически следом за клейстеризацией и начинается при температуре 80-70 ˚С. Так, в пшенной каше содержание водорастворимых веществ уменьшается даже, если ее хранят при температуре 80 ˚С. Ретроградация усиливается, если хранить изделия при комнатной температуре. Наиболее интенсивно ретроградация идет в первые два часа после момента изготовления, особенно в пшенной и гречневой кашах. В дальнейшем процесс замедляется.
Для получения долго не черствеющих или подлежащих замораживанию изделий и блюд используют амилопектин или модифицированные амилопектиновые крахмалы.
