- •Предупреждение и ликвидация газонефтеводопроявлений
- •Содержание
- •Глава 1. Физические понятия, необходимые для управления проявлениями пластовых флюидов 7
- •Глава 2. Поровое давление и давление гидроразрыва конструкция скважины 18
- •Глава 3. Гидростатический барьер. Предупреждение притока пластового флюида 58
- •Глава 4. Ликвидация проявлений пластовых флюидов 73
- •Глава 1. Физические понятия, необходимые для управления проявлениями пластовых флюидов
- •1.1 Гидростатика
- •1.1.1 Основной закон гидростатики
- •Давление повышается по мере увеличения глубины
- •1.1.2 Принцип сообщающихся сосудов. U-образная труба
- •1.2 Гидродинамика
- •1.2.1 Потери давления
- •1.2.2 Гидродинамика
- •1.2.2.1 Прямая циркуляция без использования штуцера
- •1.2.2.2 Прямая циркуляция с использованием штуцера
- •1.2.2.3 Обратная циркуляция
- •1.3 Газовые законы
- •1.3.1 Идеальные газы
- •1.3.2 Реальные газы
- •Глава 2. Поровое давление и давление гидроразрыва конструкция скважины
- •2.1 Геостатическое давление
- •2.2 Поровое давление
- •2.2.1 Связь между поровым давлением и геостатическим давлением. Понятие “эффективное напряжение”
- •2.2.2 Нормальное поровое давление
- •2.2.3 Аномальные поровые давления
- •2.2.3.1 Непроницаемые перегородки
- •2.2.3.2 Явления, вызывающие давления
- •2.2.3.3 Заключение относительно природы аномальных давлений
- •2.3 Индикаторы изменения порового давления
- •2.3.1 Информация, имеющаяся до бурения
- •2.3.1.1 Геологические изыскания
- •2.3.1.2 Геофизические методы
- •2.3.1.3 Информация о соседних скважинах
- •2.3.2 Индикаторы, получаемые во время буровых работ
- •2.3.2.1 Оперативные индикаторы
- •2.3.2.2 Отсроченные индикаторы
- •2.3.3 Каротаж и измерения в процессе бурения и отсроченные каротажные диаграммы
- •2.3.3.1 Гамма-каротаж
- •2.3.3.2 Приборы для измерения сопротивления и индукции
- •2.3.3.3 Акустический каротаж
- •2.3.3.4 Плотностной каротаж
- •2.3.3.5 Нейтронный каротаж
- •2.3.3.6 Термометрия
- •2.3.4 Заключение
- •2.4 Давление гидроразрыва
- •2.5 Оценка порового давления и давления гидроразрыва
- •2.5.1 Поровое давление
- •2.5.2 Давление гидроразрыва. Испытание вскрытой зоны на приемистость
- •2.5.2.1 Диаграмма гидроразрыва и интерпретация кривой давления
- •2.5.2.2 Процедура проведения испытания на приемистость
- •2.6 Конструкция скважины
- •2.6.1 Назначение различных обсадных колонн
- •2.6.2 Понятие допустимого и максимального давлений притока
- •Глава 3. Гидростатический барьер. Предупреждение притока пластового флюида
- •3.1 Причины притока пластового флюида
- •3.1.1 Повышение порового давления
- •3.1.2 Уменьшение давления в скважине за счет бурового раствора
- •3.1.2.1 Уменьшение плотности бурового раствора
- •3.1.2.2 Уменьшение высоты столба бурового раствора
- •3.1.2.3 Исчезновение потерь давления при остановке циркуляции
- •3.1.3 Поршневание
- •3.2 Признаки потери первичного управления скважиной
- •3.2.1 Признаки опасности проявления пластового флюида
- •3.2.2 Истинные признаки проявления пластового флюида.
- •3.3 Меры предосторожности для сохранения первичного управления скважиной и обнаружения поглощений
- •3.3.1 При спуско-подъёмных операциях для смены долота
- •3.3.1.2 Во время спо
- •3.3.2 При бурении
- •3.3.3 При специальных операциях
- •3.3.4 Особые случаи поглощений
- •3.4 Подготовка бригад
- •3.5 Специфические проблемы плавучих средств Дополнительные причины потери первичного управления скважиной
- •Глава 4. Ликвидация проявлений пластовых флюидов
- •4.1 Общие принципы
- •4.2 Закрытие скважины
- •4.2.1. При установившемся состоянии скважины
- •4.2.2 Если в скважине есть поглощение
- •4.2.3. Если скважина переливает
- •4.2.3.1 Процедура плавного закрытия скважины
- •4.2.3.2 Процедура резкого закрытия скважины
- •4.2.3.3 Сравнение двух методов
- •4.2.3.4 Заключение
- •4.3 Наблюдение за давлениями закрытой скважины
- •4.3.1 Период наблюдения за давлениями на устье скважины
- •4.3.2 Снятие показаний и сопоставление давлений на устье скважины
- •4.3.3 Оценка риска гидроразрыва при закрытии скважины
- •4.3.4 Первые расчеты после возникновения проявления флюида
- •4.3.4.1 Пластовое давление
- •4.3.4.2 Требуемая плотность раствора
- •4.3.4.3 Измерение рбкl в случае наличия обратного клапана в колонне труб
- •4.3.4.4 Оценка плотности пластового флюида
- •4.3.4.5 Скорость миграции
- •4.3.4.6 Формулы утяжеления раствора
- •4.4 Управление гидроразрывом
- •4.4.1 Изменение давления в слабой зоне
- •4.4.2 Особые ситуации
- •4.4.2.2 Случай близости ркпl к допустимому давлению [р]кп гдрз - незначительный запас безопасности
- •4.4.3 Надежность этих соображений
- •4.4.4 Параметры, связанные с прочностью обсадной колонны и пласта
- •4.4.5 Определение запаса безопасности ррепрес
- •4.5 Основной принцип управления скважиной
- •4.5.1 Основы создания забойного давления рзаб
- •4.5.2 Основы управления забойным давлением рзаб
- •4.5.3 Приемы управления флюидопроявлением
- •4.5.4 Определение производительности насоса Qглуш для управления скважиной
- •4.5.5 Различные методы управления скважиной, когда долото у забоя скважины
- •4.5.5.1 Метод бурильщика
- •Принцип и процедура
- •4.5.5.2 Метод ожидания и утяжеления или утяжеления за один цикл
- •4.5.5.3 Сравнение методов
- •4.5.6. Инструкции для бурильщика
- •4.6. Осложнения
- •4.6.1 Долото на забое, циркуляция невозможна, нет клапана: классический метод стравливания
- •4.6.2 Стравливание с измерением объёмов
- •4.6.3 Поэтапное замещение газа под пво раствором
- •4.6.4 Задавливание скважины “в лоб”
- •4.6.5 Газ на небольшой глубине
- •4.6.3.1 Обнаружение газа на небольшой глубине
- •4.6.3.2 Общие рекомендации по бурению в этих зонах
- •4.6.6 Изменение производительности насоса в процессе управления скважиной
- •4.6.7 Изменение pбк в процессе нагнетания бурового раствора требуемой плотности ут.Бр в бурильные трубы
- •4.6.8 Подход к управлению давлением ргдрз в случае слабой зоны у башмака
- •4.6.9 Утяжеление раствора за несколько циклов
- •4.7 Проявления в процессе спо
- •4.7.1 Причины притока пластового флюида (см. Главу 3)
- •4.7.2. Пути решения проблемы
- •4.7.3 Спуск колонны труб в скважину под давлением
2.2 Поровое давление
Поровое давление представляет собой давление, оказываемое флюидами, содержащимися в породах внутри пор и трещин. В равной степени используются термины пластовое давление, давление пластового флюида и давление в залежи.
2.2.1 Связь между поровым давлением и геостатическим давлением. Понятие “эффективное напряжение”
Для пористой породы геостатическое давление и поровое давление связаны следующей формулой :
ргеостат = v + рпор
ргеостат - геостатическое давление, выраженное в барах,
v - вертикальное эффективное напряжение, ведущее к деформации породы и выраженное в барах,
рпор - поровое давление, выраженное в барах.
В случае непористой породы мы получим рпор = 0 и ргеостат = v. Геостатическое давление полностью создается матрицей породы.
В нормальных условиях поровое давление не зависит от геостатического давления.
2.2.2 Нормальное поровое давление
Поровое давление называется нормальным, когда его единственной причиной является гидростатическое давление вод, насыщающих породы и сообщающихся через поры с атмосферой независимо от морфологии пор и перемещений флюида. Режим нормального давления предполагает существование системы, гидравлически открытой для атмосферы.
Такое нормальное поровое давление учитывает среднюю плотность подземных вод.
Эта плотность, зависящая от солености вод, обычно составляет 1,00-1,08. Для поверхностных вод она находится в пределах 1,00-1,04. В более глубоких пластах она может составить 1,15 и еще больше в случае пород, находящихся в контакте с соляными куполами.
Согласно определению пласта при нормальном давлении, можно сделать вывод о том, что бурение пород с нормальным давлением может осуществляться без проблем с использованием бурового раствора плотностью 1,00-1,20, в зависимости от плотности пластовых вод.
Однако, в некоторых случаях понадобится использовать буровой раствор плотностью ниже 1,00 или выше 1,20.
Случай расположения буровой выше отметки обнажения поверхности или контура питания проницаемого пористого пласта. Равновесная плотность для пересечения пласта будет меньше 1,00 (рис. 2.3).
Рис. 2.3 Расположение буровой выше отметки зоны обнажения
Случай расположения буровой ниже отметки зоны обнажения. Плотность бурового раствора должна быть выше 1,00 для прохождения пласта. Это случай артезианских скважин (рис. 2.4).
Рис. 2.4 Расположение буровой ниже отметки зоны обнажения
Отметка расположения буровой, отличающаяся от уровня контура питания пласта, создает такую “кажущуюся аномалию давления”, что требует повысить или снизить плотность бурового флюида. Эти аномалии вызываются топографией.
2.2.3 Аномальные поровые давления
Любое поровое давление, не соответствующее определению параграфа 2.2.2, называется аномальным.
Существование аномальных давлений требует одновременного присутствия :
непроницаемой перегородки, образующей “стенку сосуда, работающего под давлением” и не допускающего сообщения флюидов с атмосферой,
и явления, создающего давление.
Наличие непроницаемой перегородки связано с геологическими процессами (осадконакопление, диагенез и тектоника).
Вызывающие давление явления многочисленны и разнообразны. Они действуют зачастую одновременно и связаны с физико-химическими процессами. Основные из них :
присутствие углеводородов (эффект плотности),
эффект геостатического давления в процессе оседания (недоуплотненные породы),
минералогические превращения глин,
термическая экспансия вод,
осмос,
отложение эвапоритов,
превращение органического вещества,
тектоника,
циркуляция флюидов (гидродинамизм).
В существовании избыточных давлений важную роль играет время. Непроницаемые перегородки никогда не бывают герметичными и постоянными в масштабе геологических периодов. С течением времени давления имеют тенденцию к выравниванию с обеих сторон перегородки. Это объясняет, почему эффективное давление чаще встречается в недавно сформировавшихся породах по сравнению с древними.
