- •Автоматизация серийного производства деталей применением металлорежущих станков с числовым программным управлением и промышленных роботов
- •1. Состав и структура курсового проекта
- •1.1. Цель и задачи курсового проектирования применительно к выполнению выпускной квалификационной работы (вкр)
- •1.2. Содержание, требуемое наполнение, заданные объемы и особенности выполнения курсового проекта по аппм
- •1.3. Задачи и рекомендации по выполнению обзорной части в области автоматизации производства по теме проекта
- •2. Станочные автоматизированные модули, их
- •2.1. Основные преимущества применения станков с числовым программным управлением (чпу); их функциональные возможности
- •2.2. Разновидности станочных систем в серийном производстве
- •2.3. Технологические аспекты построения операций обработки деталей на станках с чпу
- •2.4. Специфика программного управления станками; системы управляемых координат и преимущества чпу
- •2.5. Металлорежущие станки с чпу, как важнейшие элементы станочных модулей, их разновидности и варианты конструктивного исполнения
- •2.5.1. Особенности токарных станков с чпу
- •2.5.2. Особенности многооперационных станков (обрабатывающих центров)
- •2.6. Примеры выполнения механической части станков с чпу и ее важнейшие составляющие (столы, инструментальные магазины, шпиндельные головки)
- •2.7. Промышленные роботы, их определение, классификация и порядок выбора требуемой модели
- •2.7.2. Данные о применении промышленных роботов в реальных производственных условиях
- •2.8. Компоновка общего вида автоматизированного станочного модуля; требования к оформлению чертежа
- •2.9. Построение циклограммы для станочного модуля; расчет цикловой производительности и коэффициента его загрузки
- •2.10. Расчет цикловой производительности и коэффициента загрузки асм
- •2.11. Основные правила техники безопасности при использовании промышленных роботов в составе асм
- •3. Проектирование средств технологического
- •3.1. Расчет механических захватных устройств промышленных роботов, как основного вида средств их оснащения
- •3.1.1. Разновидности захватных устройств пр и их краткая классификация
- •3.1.2. Механические захватные устройства роботов и их расчет
- •3.2. Особенности конструкции и расчета захватных устройств вакуумного типа для манипулирования деталями
- •3.3. Пристаночные накопители заготовок, их конструктивные особенности и основные количественные показатели
- •Контрольные вопросы
- •Список литературы
3.3. Пристаночные накопители заготовок, их конструктивные особенности и основные количественные показатели
Выбор и конструкция накопителя заготовок для АСМ является важной и ответственной задачей. Накопители различают трех типов: магазинные, бункерно-магазинные (штабельные) и бункерные. В магазинных накопителях заготовки уложены в один ряд вплотную или вразрядку в емкости. Их загружают и ориентируют вручную или укладочным механизмом. Все остальные перемещения необходимые для загрузки заготовок, выполняются автоматически.
В бункерно-магазинных накопителях подаваемые заготовки, уложенные в несколько рядов вразрядку или штабелем в емкости, являющейся бункером или магазином, загружают или ориентируют вручную или укладочным механизмом. Все остальные перемещения заготовок, необходимые для загрузки выполняются автоматически. В бункерных загрузочных устройствах заготовки в бункере сосредоточены навалом. Захват из бункера и ориентация заготовок в положение требуемое для обработки или удобное для загрузки, и все последующие перемещения, осуществляются автоматически. Магазинные накопители следует применять для загрузки заготовок, ориентация которых затруднена вследствие особенностей их формы, размеров и массы или когда по характеру серийности производства нецелесообразно изготовлять сложные загрузочные устройства.
Бункерно-магазинные устройства следует применять для загрузки заготовок простой формы, на обработку которых требуется мало времени и когда изготовление механизмов ориентации затруднено или экономически нецелесообразно. Бункерные устройства следует применять для загрузки заготовок простой формы, небольшой массы и размеров, на обработку которых требуется мало времени.
Рассмотрим в качестве примера следующий вариант конструкции накопителя.В проектируемом модуле используется магазинный накопитель на основе универсального поворотного стола, оснащённого блоком реле поворота, и возможностью включения в цепь системы управления станочным модулем. Ввиду особенностей конструкции обрабатываемой детали и требований к ориентации детали в накопителе, укладка заготовок в накопитель производится вручную. Эскиз накопителя дан на рис. 3.14.
Рис. 3.14. Эскиз накопителя с расположенными на нём деталями
Описание конструкции накопителя для заготовок (поз.1): базирующие плиты 2 в количестве 4 шт. устанавливаются на универсальный поворотный стол 3. Каждая плита имеет пять посадочных мест, а каждое посадочное место имеет по три ориентирующих штифта. Всего накопитель имеет 20 посадочных мест, расположенных на равных интервалах по окружности стола, и равноудаленных от оси вращения стола, которое обеспечивается электродвигателем 4.
Блок реле поворота универсального стола настраивается на величину угла 360/20=18°, сигнал на один поворот стола подаётся на двигатель от системы управления станочным модулем согласно алгоритму цикла.
Тактовые столы. Накопители заготовок могут изготавливаться в виде тактовых столов. Они выпускаются серийно, являются пристаночными накопителями, т. е. имеют небольшую вместимость (в отличие от автоматизированных складов). В качестве примера приведем порядок выбора такого стола.
Стол в нашем варианте автоматизации необходим для подачи заготовок к руке робота в позицию с точно заданными координатами. Тактовый стол входит в состав комплекса станок-промышленный робот-тактовый стол, который является базой для создания автоматизированных модулей производственных ячеек, объединяемых в автоматизированные участки и цеха. Тактовый стол предназначен для подачи и приема заготовок. Управление столом осуществляется от системы управления робота.
Стол выбирается исходя из габаритов специальной загрузочной панели и величины возможных перемещений манипулятора. Также на выбор стола влияет возможность размещения необходимого количества панелей достаточного для непрерывной работы модуля в течение 1 рабочей смены.
На рис. 3.15 изображена схема расположения на столе загрузочных панелей, на которых размещаются подаваемые к роботу заготовки.
Рис. 3. 15.Схема тактового стола модели СТ 350
Табл. 3.7. Характеристики тактового стола.
Вместимость накопителя, иначе это количество заготовок при его полной загрузке, определяет время работы АСМ в автономном режиме. Робот захватывает очередную заготовку в одной и той же точке, переносит ее на станок с ЧПУ. Далее, механизм накопителя подает в эту точку следующую заготовку. Такой режим применяется в случае удаления готовых деталей роботом в другой накопитель или на отводящий транспортер.
Возможен вариант, при котором ПР укладывает и готовую деталь в этот же накопитель (в освободившееся от заготовки гнездо). И уже после этого включается подача очередной заготовки в позицию загрузки робота.
Простейшим случаем устройства накопителя может служить стационарная конструкция, состоящая из корпуса (тары), в котором размещаются заготовки на специальных поддонах, разделенные друг от друга перегородками. Перегородки обеспечивают точное расположение заготовок, исключают поврежедения при соударении (особенно это касается мягких цветных сплавов) и возможный травматизм при использовании тяжелых заготовок. Следует отметить, что такие накопителя необходимо предусматривать для станочных модулей с ручной загрузкой человеком-оператором станка с ЧПУ. Это повышает культуру производства.
Заготовки укладываются вне станочного модуля вспомогательным рабочим. Накопитель доставляется на АСМ двумя способами:
- по воздуху с помощью подъемного средства имеющегося в цехе;
- посредством электрокара.
В конструкции необходимо предусмотреть соответствующие рым-болты, либо грузовые винты которые имеются в перечне стандартных крепежных изделий. Для второго исполнения достаточно предусмотреть проем снизу корпуса для размещения захватного устройства электрокара.
Поддоны можно располагать в несколько ярусов (уровней). Рабочий-оператор снимает очередной поддон при его освобождении от заготовок. Они, в виде готовых деталей укладываются уже в другой аналогичный накопитель. Следует учесть удобство работы при расположении поддонов по высоте. Все это увеличивает вместимость накопителя.
Однако последний вариант имеет недостаток при использовании на операции загрузки промышленного робота: требуется его более совершенная модель, чтобы он мог проводить захват из разных мест поддона. Соответственно усложняется его программирование. Заготовки, скорее всего, придется расположить в одном уровне.
Итак, накопитель может быть выбран из серийно выпускаемых моделей, либо спроектирован (если это оговорено в задании на КП). В последнем случае оформляется сборочный чертеж (СБ). Расчет накопителя достаточно прост и сводится к определению его потребной вместимости и габаритных размеров, исходя из размеров заготовки. За основу принимается время работы станочного модуля с одной полной загрузки накопителя (ΣТраб.). Наилучший вариант – это 8 часов (длительности рабочей смены), либо 4 часа, с условием его замены (или пополнения запаса заготовок) в обеденный перерыв. В крайнем случае, можно принять это время, равным 2-м часам. Иначе работа станочного модуля становится малоэффективной.
Можно воспользоваться следующей формулой:
Nзаг = ΣТраб./Тц, (3.60)
где ΣТраб – общее время работы модуля с полной загрузки, мин;
ΣТраб – время рабочего цикла станочного модуля, затрачиваемое на обработку одной детали, мин.
ЗАКЛЮЧЕНИЕ
Автоматизированные станочные модули получают все большее применение и развитие в машиностроительной промышленности. Применение их как новой тенденции автоматизированных систем и оборудования позволяет расширить технологические возможности станков, повысить производительность механообработки и эффективность современного производства в целом; кроме того, значительно сократить долю ручного труда.
Использование металлорежущих станков с ЧПУ в производстве обеспечивает целый ряд преимуществ, о чем говорилось выше. Применение промышленных роботов освобождает человека от трудоемких утомительных операций, повышает безопасность труда.
При этом значительно повышается качество и однородность обрабатываемых деталей, сокращаются занимаемые производственные площади, а обработка по управляющей программе исключает субъективные ошибки рабочих-станочников, занятых работой на универсальных станках.
В данном пособии предпринята попытка обобщить имеющийся опыт разработки станочных модулей с применением промышленных роботов для автоматизации вспомогательной операции по загрузке заготовки на станок и снятия готовой детали. Большое значение имеет также расчет и проектирования средств оснащения роботов в виде захватных устройств.
Сведения обзорного, технического и специального методического характера, приведенные в достаточно большом объеме в этом пособии, могут быть успешно использованы студентами в процессе их обучения по программе бакалавриата в период работы над курсовым проектом по АППМ и в последующей выпускной работе. Надеемся, что они будут способствовать закреплению материала лекций и лабораторных работ по указанному предмету, будут полезны в будущей практической деятельности.
В любом случае, обучающимся следует исходить из полученного задания, требуемой структуры и содержания курсового проекта, которые подробно приведены в данном учебно-методическом пособии.
