- •Автоматизация серийного производства деталей применением металлорежущих станков с числовым программным управлением и промышленных роботов
- •1. Состав и структура курсового проекта
- •1.1. Цель и задачи курсового проектирования применительно к выполнению выпускной квалификационной работы (вкр)
- •1.2. Содержание, требуемое наполнение, заданные объемы и особенности выполнения курсового проекта по аппм
- •1.3. Задачи и рекомендации по выполнению обзорной части в области автоматизации производства по теме проекта
- •2. Станочные автоматизированные модули, их
- •2.1. Основные преимущества применения станков с числовым программным управлением (чпу); их функциональные возможности
- •2.2. Разновидности станочных систем в серийном производстве
- •2.3. Технологические аспекты построения операций обработки деталей на станках с чпу
- •2.4. Специфика программного управления станками; системы управляемых координат и преимущества чпу
- •2.5. Металлорежущие станки с чпу, как важнейшие элементы станочных модулей, их разновидности и варианты конструктивного исполнения
- •2.5.1. Особенности токарных станков с чпу
- •2.5.2. Особенности многооперационных станков (обрабатывающих центров)
- •2.6. Примеры выполнения механической части станков с чпу и ее важнейшие составляющие (столы, инструментальные магазины, шпиндельные головки)
- •2.7. Промышленные роботы, их определение, классификация и порядок выбора требуемой модели
- •2.7.2. Данные о применении промышленных роботов в реальных производственных условиях
- •2.8. Компоновка общего вида автоматизированного станочного модуля; требования к оформлению чертежа
- •2.9. Построение циклограммы для станочного модуля; расчет цикловой производительности и коэффициента его загрузки
- •2.10. Расчет цикловой производительности и коэффициента загрузки асм
- •2.11. Основные правила техники безопасности при использовании промышленных роботов в составе асм
- •3. Проектирование средств технологического
- •3.1. Расчет механических захватных устройств промышленных роботов, как основного вида средств их оснащения
- •3.1.1. Разновидности захватных устройств пр и их краткая классификация
- •3.1.2. Механические захватные устройства роботов и их расчет
- •3.2. Особенности конструкции и расчета захватных устройств вакуумного типа для манипулирования деталями
- •3.3. Пристаночные накопители заготовок, их конструктивные особенности и основные количественные показатели
- •Контрольные вопросы
- •Список литературы
2.9. Построение циклограммы для станочного модуля; расчет цикловой производительности и коэффициента его загрузки
Циклограмма – это график, отражающий последовательность движений всех элементов, механизмов и устройств, входящих в станочную систему. По горизонтальной оси откладывается время в определенном масштабе, а по вертикальной – дается перечень обозначений элементов, участвующих в работе, т. е. подвижных, затрачивающих какое-либо время. Цель построения заключается в получении значения длительности рабочего цикла (ТЦ) оборудования (в нашем случае всего АСМ) для последующего определения производительности модуля, а также возможностей оптимизации цикла путем сокращения затрат времени по переходам.
Она отражает последовательность срабатывания всех механизмов (элементов) модуля в пределах времени полного цикла обработки детали. Для построения циклограммы необходимо знать скорости угловых и линейных перемещений исполнительных органов промышленного робота, а также их величины в соответствии с разработанной компоновкой.
На рис. 2.74 представлена циклограмма работы АСМ с использованием ПР модели МП20.40.01, оснащенного механическим захватным устройством (схватом). Перед построением циклограммы составляется таблица, в которой указывается характер перемещений, номер цикла и время его выполнения по программе, заданной роботу. Время работы станка с ЧПУ допускается указать общим отрезком, без разбиения на отдельные технологические переходы, т. к. оно известно и рассчитывается в технологической части проекта. Время удобнее всего задавать в секундах (с.). Расчет и построение временных отрезков следует производить с достаточной точностью, равной 0,1 с.
Сами отрезки времени наносятся на горизонтальную ось графика и определяются для каждого перехода расчетом. При этом достаточно знать скорость перемещения (она известна из его технической характеристики) и величину перемещения (размер), которая задается конструктивно в пределах возможных перемещений для робота выбранной модели.
Время на «зажим-разжим» захватного устройства (схвата), трудно поддающееся расчету, можно принять ориентировочно в пределах до 1 с. Необходимо предусмотреть вспомогательное время для установки и закрепления детали рабочим-оператором в случае его использования в неавтоматизированных вариантах станочных модулей.
В табл. 2.13 приведено содержание технологических переходов, выполняемых элементами ГПМ и время, затрачиваемое на их выполнение.
Табл. 2.13. Содержание технологических переходов, выполняемых элементами АСМ
-
Номер цикла
Содержание выполняемых команд
Время цикла, с
t1
Опускание руки робота вертикально вниз на 0,1 м
0,5
t2
Срабатывание схвата на «зажим»
2
t3
Поворот руки на 90º и одновременный поворот кисти на 90º против часовой стрелки
1,5
t4
Выдвижение руки в горизонтальном направлении вперед по оси ОХ на 0,79 м
1,5
t5
Движение контр-шпинделя станка влево и зажатие заготовки кулачками механизированного патрона
1,5
t6
Срабатывание схвата ПР на «разжим»
2
t7
Втягивание руки в горизонтальном направлении по оси ОХ назад на 0,79 м
1,5
t8
Выдвижение руки в горизонтальном направлении вперед по оси ОХ на 0,79 м
1,5
t9
Срабатывание схвата на «зажим»
2
t10
Разжим кулачков механизированного патрона
1
t11
Втягивание руки в горизонтальном направлении по оси ОХ назад на 0,79 м
1,5
t12
Поворот руки на 135º и одновременный поворот кисти против часовой стрелке на 90º
2,25
t13
Срабатывание схвата на «разжим»
2
t14
Поворот руки ПР на 45º и одновременный подъем руки по вертикали на 0,1 м
0,75
Рис. 2.74. Вариант построения циклограммы станочного модуля
