- •Новокузнецк
- •Оглавление
- •1. Классификация электрических и электронных аппаратов
- •2. Требования, предъявляемые к электрическим аппаратам
- •3. Электродинамическая и термическая устойчивость эа
- •Нагрев эа
- •4. Электрическая дуга
- •Способы гашения дуги
- •Способы искрогашения
- •5. Схемы искрогашения
- •6. Контакторы с опережением
- •7. Электрические контакты
- •Возможные
- •8. Электромагниты
- •8.1 Конструкции электромагнитов
- •3. Поворотный
- •8.2 Релейные характеристики электромагнитов
- •8.3 Тяговые и механические характеристики электромагнитов «-I»
- •9. Электромагнитная техника
- •9.1 Реле нейтральные
- •9.1.1 Токовые реле и реле напряжения
- •Реле промежуточные
- •Реле времени
- •9.1.4 Комбинированное реле на основе индукционного токового реле типа рт80…90. Состав, принцип действия, работа с реле
- •9.1.5 Реле токовое дифференциальное как реле с быстрым насыщением сердечника на примере pht-565. Состав, принцип действия, работа с реле
- •9.2 Поляризованное реле
- •10. Обмотки электромагнитов и их расчёт
- •10.1 Расчёт обмотки электромагнитов постоянного тока (материал, форма, сечение провода, вид намотки, каркас или без)
- •10.2 Расчёт обмотки электромагнитов переменного тока
- •11. Время срабатывания и время отпускания электромагнитов. Способы изменения временных параметров электромагнита
- •12. Датчики электрических и неэлектрических величин
- •12.1 Общие сведения
- •12.2 Датчики активного сопротивления
- •12.2.1 Реостатные и потенциометрические датчики
- •Датчики реактивного сопротивления
- •Сельсины и вращающиеся трансформаторы как датчики угла и рассогласования
- •Датчики скорости
- •12.6 Датчики тока и напряжения
- •12.7 Электродные датчики уровня
- •13. Логические элементы
- •14. Магнитные усилители
- •15. Автоматические выключатели
- •Выключатели автоматические а3700 на токи 16...160 а
- •Область применения
- •Основные технические данные
- •Дополнительные сборочные единицы и устройства:
- •Выключатели автоматические ва57-35, ва57ф35 на токи 16...250 а
- •Область применения
- •Основные технические данные
- •Функциональные возможности
- •Выключатели автоматические d-max 1600 серии ва57-43 на токи до 1600 а
- •Область применения
- •Функции электронного расцепителя
- •Комплектующие изделия:
- •Автоматические выключатели дифференциального тока da29 с устройством защитного отключения (узо)
- •Основные технические данные
4. Электрическая дуга
Дуга появляется при условии:
U > U0 и I > I0
где U0 и I0 – минимальные значения напряжения и тока, необходимые для поддержания дугового разряда.
Для разных материалов они следующие:
|
U0, В |
I0, А |
Платина |
17,0 |
0,9 |
Золото |
15,0 |
0,38 |
Серебро |
12,0 |
0,4 |
Вольфрам |
17,0 |
0,9 |
Медь |
12,3 |
0,43 |
Уголь |
18-22 |
0,03 |
Если I < I0, то при U = 270 – 330 В возникает тлеющий разряд или искра.
Рисунок 8 – Электрическая дуга
Основные свойства дугового разряда:
Дуга сопровождается большими токами при малых напряжениях.
Температура центральной части дуги в ЭА достигает величины 6000 – 18000 К.
Плотность тока на катоде достигает 102 – 103 А/мм2.
Падение напряжения у катода составляет всего 10-20 В и практически не зависит от тока.
Поскольку для ЭА дуга опасна, если не используется для технологии, то нас в первую очередь, интересуют процессы возникновения, устойчивого горения дуги и условия ее быстрого погашения.
Дуга имеет три области: околокатодную, столб дуги, околоанодную (рисунок 8). Здесь: Х – длина дуги; Е – напряженность электрического поля; U – напряжение дуги.
Ток дуги Iq ≈ const через все три области, однако процессы ионизации и деионизации в областях разные. Рассмотрим последовательно все области.
Околокатодная область: α ≤ 10-6м, Uкатода = 10 ÷ 20 В, Еср = 107 В/м (средняя напряженность электрического поля). Основные носители тока – электроны с катода, движущиеся в электрическом поле, создаваемым объемным положительным зарядом (положительные ионы около катода) и катодом. Электроны, ускоряясь, соударяются с нейтральными частицами и ионизируют их. Положительные ионы разгоняются в поле катода и бомбардируют его, вызывая повышение температуры катода и испарение его материала. При высоких температурах катода возникает термоэлектронная эмиссия, хотя для дуги достаточно и автоэлектронной эмиссии (эмиссия за счет электрического поля).
Дуговой столб:
Основной источник ионов и электронов – термическая ионизация: большая температура увеличивает скорость частицы настолько, что, ударяясь о нейтральный атом, она его ионизирует. Здесь характерны зависимости:
1) увеличение Е → ионизация ↑;
рост температуры → ионизация ↑;
масса ↓ → скорость ↑→ ионизация ↑;
давление газа ↑ → степень ионизации ↓;
присутствие металлических паров → степень ионизации ↑.
Зависимости используются как для поддержания устойчивости горения дуги в технологических процессах, так и для гашения дуги. Гашение дуги происходит за счет деионизации дугового столба, которая в большей степени зависит от теплового (энергетического) баланса дуги.
Охлаждение дуги происходит за счет излучения, теплопроводности и конвекции. Решающими факторами здесь являются теплопроводность и конвекция (до 85% потери энергии дуги). Например, горение в трансформаторном масле приводит к образованию водорода, у которого теплопроводность очень велика. Дуга в атмосфере водорода быстро охлаждается и гаснет. Для сравнения: ток, отключаемый в атмосфере «Н», в 7,5 раза выше, чем в воздухе при одинаковом давлении. Аналогичным эффектом, но за счет конвекции, обладает принудительное дутье сжатым воздухом с высокой скоростью или магнитное дутье за счет действия магнитного поля – это приводит к перемещению дуги в пространстве и ее интенсивному охлаждению.
Околоанодная область:
Вблизи анода за счет движения электронов к аноду создается отрицательный объемный заряд, что вызывает околоанодное падение напряжения и повышение Е.
Uанода= 5 ÷ 10 В.
Энергия электронов отдается аноду, что резко увеличивает температуру анода (выше температуры катода!), что приводит к вторичной эмиссии электронов.
Однако ↑ анода и околоанодной области существенно не влияют на возникновение и условие горения дуг.
Для сильноточной дуги Uа↓ и очень мало.
В ЭА до 1 кВ «α» дуги не велика и
Uстолба << Uкатода + Uанода.
Такие дуги называют короткими. Основная часть тепла отводится электродами.
В ЭА с U > 1 кВ:
Uстолба >> Uкатода + Uанода.
Такие дуги называют длинными. Процессы горения дуги, в основном, определяются состоянием столба дуги.
