- •Новокузнецк
- •Оглавление
- •1. Классификация электрических и электронных аппаратов
- •2. Требования, предъявляемые к электрическим аппаратам
- •3. Электродинамическая и термическая устойчивость эа
- •Нагрев эа
- •4. Электрическая дуга
- •Способы гашения дуги
- •Способы искрогашения
- •5. Схемы искрогашения
- •6. Контакторы с опережением
- •7. Электрические контакты
- •Возможные
- •8. Электромагниты
- •8.1 Конструкции электромагнитов
- •3. Поворотный
- •8.2 Релейные характеристики электромагнитов
- •8.3 Тяговые и механические характеристики электромагнитов «-I»
- •9. Электромагнитная техника
- •9.1 Реле нейтральные
- •9.1.1 Токовые реле и реле напряжения
- •Реле промежуточные
- •Реле времени
- •9.1.4 Комбинированное реле на основе индукционного токового реле типа рт80…90. Состав, принцип действия, работа с реле
- •9.1.5 Реле токовое дифференциальное как реле с быстрым насыщением сердечника на примере pht-565. Состав, принцип действия, работа с реле
- •9.2 Поляризованное реле
- •10. Обмотки электромагнитов и их расчёт
- •10.1 Расчёт обмотки электромагнитов постоянного тока (материал, форма, сечение провода, вид намотки, каркас или без)
- •10.2 Расчёт обмотки электромагнитов переменного тока
- •11. Время срабатывания и время отпускания электромагнитов. Способы изменения временных параметров электромагнита
- •12. Датчики электрических и неэлектрических величин
- •12.1 Общие сведения
- •12.2 Датчики активного сопротивления
- •12.2.1 Реостатные и потенциометрические датчики
- •Датчики реактивного сопротивления
- •Сельсины и вращающиеся трансформаторы как датчики угла и рассогласования
- •Датчики скорости
- •12.6 Датчики тока и напряжения
- •12.7 Электродные датчики уровня
- •13. Логические элементы
- •14. Магнитные усилители
- •15. Автоматические выключатели
- •Выключатели автоматические а3700 на токи 16...160 а
- •Область применения
- •Основные технические данные
- •Дополнительные сборочные единицы и устройства:
- •Выключатели автоматические ва57-35, ва57ф35 на токи 16...250 а
- •Область применения
- •Основные технические данные
- •Функциональные возможности
- •Выключатели автоматические d-max 1600 серии ва57-43 на токи до 1600 а
- •Область применения
- •Функции электронного расцепителя
- •Комплектующие изделия:
- •Автоматические выключатели дифференциального тока da29 с устройством защитного отключения (узо)
- •Основные технические данные
Датчики скорости
В автоматизированном электроприводе датчики скорости используются для преобразования скорости двигателя или скорости движения рабочего органа механизма в электрический сигнал для организации обратной связи по скорости. В качестве аналоговых датчиков скорости применяются тахогенераторы постоянного и переменного тока.
Тахогенератор постоянного тока представляет собой микромашину постоянного тока с независимым возбуждением или постоянными магнитами, входной координатой которого является угловая скорость , а выходной – напряжение Uвых, выделяемое на сопротивлении нагрузки.
Рисунок 40 – Схема (а) и характеристика управления (б) тахогенератора постоянного тока
,
(44)
где Ф – магнитный поток возбуждения; k – конструктивная постоянная; kтг – передаточный коэффициент тахогенератора; Rтг – сопротивление якорной обмотки и щеточного контакта тахогенератора; Rн – сопротивление нагрузки.
Характеристика управления нелинейная в области малых и больших скоростей. В первом случае для уменьшения нелинейности используют металлизированные щетки, во втором – ограничивают скорость сверху и увеличивают сопротивление нагрузки. Тахогенераторы высокой точности выполняются с полым беспазным якорем и дополнительно к выходу генератора подключают конденсатор, выполняющий роль фильтра «С». Передаточная функция при этом имеет вид
,
(45)
где Тф – постоянная времени фильтра.
,
(46)
где С – емкость фильтра.
Тахогенераторы переменного тока выполнены на базе асинхронной двухфазной машины (рисунок 41).
Рисунок 41 – Тахогенератор переменного тока
На статоре имеются две взаимно перпендикулярные обмотки: обмотка возбуждения, расположенная по оси , и выходная обмотка управления, расположенная по оси . Последняя включена на сопротивление нагрузки тахогенератора. Для уменьшения момента инерции ротор выполняется тонкостенным в виде полого стакана из немагнитного материала. Внутри ротора размещается неподвижный стальной шихтованный сердечник, по которому замыкается магнитный поток.
Амплитудные значение ЭДС и передаточного коэффициента ТГ:
Eвых.m = kтг ∙ω,
.
(47)
Коэффициенты А и В:
,
(48)
,
где
;
–
приведённое к обмотке статора сопротивление
ротора;
-
индуктивное сопротивление намагничивания;
Rc
и хc
– активное и индуктивное сопротивление
рассеяния обмотки статора;
ω* = ω/ ωс – относительная скорость ротора; ω – изменяемое значение скорости; ωс – синхронная скорость ротора.
Рисунок 42 – Характеристики управления тахогенератора переменного тока
Асинхронные тахогенераторы имеет достаточно высокую точность. Линейность характеристик определяется погрешностью менее 0,5%. По сравнению с тахогенераторами постоянного тока обладает существенно меньшим передаточным коэффициентом.
Существенными преимуществами в точности по сравнению с аналоговыми имеют цифровые датчики скорости.
Рисунок 43 – Структурная схема цифрового датчика скорости
Структурно в датчике выделяются две части: датчик импульсов ДИ и счетчик импульсов СИ. ДИ является импульсным преобразователем и преобразует угловую скорость вала в импульсы с частотой f, пропорциональной скорости. Задача кодового преобразователя СИ как счетчика импульсов формировать на интервале измерения Т цифровой код Аn выходной величины датчика скорости.
Рисунок 44 – Кодовый диск фотоэлектрического датчика импульсов
ДИ выполняется на основе фотоэлектрического кодового диска (рисунке 43) и вырабатывает две серии импульсов, сдвинутых по фазе на 900, которые используются для определения величины и знака угловой скорости. На двух дорожках расположены пропускающие свет щели. Свет от источников ИС1 и ИС2 через щели попадает на фотодиоды BL1 и BL2, которые при этом открыты и пропускают ток. Когда щель выходит из луча света, фотодиоды запирают цепь. При вращении диска с угловой скоростью фотодиоды дают чередование максимального и минимального сигналов с частотой
,
(49)
где Nди – импульсная емкость кодового диска (число импульсов на один оборот диска).
Среднее значение скорости определяется числом импульсов N на периоде измерения T:
.
(50)
Точность цифрового датчика увеличивается с увеличением измеряемой скорости и периода измерения.
