- •3.Объемно-планировочные решения промышленных зданий, классификация, схемы объемно-планировочных решений.
- •11. Градостроительные требования к застройке и размещению промышленных комплексов и промышленных зданий.
- •14. Строительные системы зданий (определение, классификационная схема). Железобетонные и металлические строительные системы.
- •16. Конструктивные системы промышленных зданий и их сравнительная характеристика.
- •23. Модульная координация, унификация и типизация в промышленном строительстве. Модульная система и параметры зд-й. Привязка.
- •24. Естественное и искусственное освещение промышленных зданий. Порядок нормирования и проектирования освещения промышленных зданий Естественное освещение помещений
- •9. Искусственное освещение помещений.
- •36. Основные элементы сборных железобетонных каркасов.
- •39. Фундаменты зданий. Воздействия на них, требования к фундаментам, выбор типа. Сплошные фундаменты, область применения, конструктивные решения.
- •Сплошные фундаменты представляют собой сплошную безблочную или ребристую железобетонную плиту под всей площадью здания Области применения
- •41Металлические каркасы одноэтажных промышленных зданий. Общие положения, компоновочные и конструктивные схемы каркасов. Составные элементы каркасов и обеспечение пространственной жесткости.
- •1. Инженерно-геологические условия
- •2. Климатические условия
- •3. Конструктивные особенности здания, наличие подземной части
- •47. Емс в промышленном строительстве. Модули зданий, пролет шаг и высота этажей.
- •50. Особенности конструктивных решений промышленных зданий для северной строительно-климатической зоны.
- •51. Конструкции каркасов многоэтажных промышленных зданий с балочными перекрытиями.
- •53. Основные элементы каркасов одноэтажных промышленных зданий из железобетонных конструкций.
- •56. Конструктивные решения деформационных швов в фундаментах, стенах, перекрытиях и покрытиях.
- •58. Железобетонные и металлические подкрановые балки и фермы.
23. Модульная координация, унификация и типизация в промышленном строительстве. Модульная система и параметры зд-й. Привязка.
Модуль – условная единица измерения, принятая в целях координации размеров.
Модульные системы: мультимодули – укрупненные модули. Применимы 3; 6; 12; 60 М. Используют для назначения размеров основн арх-конструктивн параметров зд-й и конструкций. Субмодули (дробные модули) – модуль, умноженный на дробное число. Применимы: ½ М; 1/5 М; 1/20 М и тд. – размеры конструктивн элементов.
Модульная система основывается на планировочном модуле 0,5м и высотном — 0,6м. Все элементы ограждения зд-й — стеновые и оконные панели, ворота, плиты покрытий и перекрытий—кратны по осн. номинальным размерам этим модулям/ их дробной части.
Сетка колонн, образуемая их разбивочными осями, кратна укрупненным планировочным модулям: в направлении шага — 6 м; в направлении пролета — 6 м для одноэтажных и 1,5м — для многоэтажных зданий.
Шаг колонн: {6; 7,5; 9; 10,5; 12; 13,5; 15; 16,5; 18} – 15 М.
Высота этажей: 3 м – 3,6 м через 0,3 – модуль 3М. От 3,6 – 18 м – модуль 6М. Цель и этапы унификации в промышленном строительстве. Унификация предусматривает приведение к единообразию и взаимосочетанию размеров объемно-планировочных компонентов зданий и их конструкций с целью уменьшения объемно-планировочных параметров и количества типоразмеров элементов (по форме и конструкции). Существенно ограничивая количество типоразмеров конструкций и деталей, система унификации служи? надежной предпосылкой экономической рентабельности их заводского производства.
Для унификации производят отбор таких зданий, объемно-планировочные схемы и конструктивные решения которых обеспечивают в наибольшей мере функциональные, технические, архитектурно-художественные и экономические требования. Система унификации положена в основу типизации конструкций, т.е. направления, позволяющего на базе отобранных или специально разработанных типов создавать оптимальные объемно-планировочные и конструктивные решения как образцы для многократного повторения в строительстве. Основой при этом является использование прогрессивных норм, унифицированных параметров и индустриальных конструкций ограниченной номенклатуры.
Унифицированные объемно-планировочные и конструктивные решения зданий не является чем-то застывшим. Их совершенствуют с учетом прогрессивных норм и методов производства, развития строительных конструкций и технологии строительного производства, изменения норм проектирования, архитектурно-художественных и экономических требований и т.п.
Развитие унификации происходило поэтапно. На начальном этапе производился отбор и взаимоувязка линейных параметров зданий (пролет, шаг колонн, высота, нагрузка на конструкции). На этой стадии для многих отраслей промышленности были разработаны габаритные схемы зданий. В таблице IV-! приведены наиболее часто используемые габаритные схемы одноэтажных зданиях, а в таблице 1У-2 - сочетания размеров высот, грузоподъемности кранов и отметок головок подкрановых рельсов.
Переход на использование унифицированных габаритных схем позволял значительно сократить число типоразмеров конструкций и деталей, повысить серийность и снизить стоимость их производства, однако их множество еще не исключалось. Поэтому в дальнейшем был осуществлен поиск путей перехода на пространственную и объемную унификацию зданий. В результате этой работы были разработаны унифицированные типовые секции (УТС). УТС представляет собой объемный элемент здания, ограниченный несколькими пролетами по ширине, с постоянной высотой и длиной, как правило, принимаемой равной допустимому расстоянию между поперечными температурными швами. Так, например, для ряда предприятий машиностроительной промышленности были получены секции с размерами в плане 144 х 72 м, высотой пролетов 10,8 м и с использованием мостовых кранов грузоподъемностью 10 и 20 т. Для ряда отраслей производства (заводы по производству сборного железобетона, здания ТЭЦ и др.), где использование крупноразмерных УТС не оправдано, были разработаны у н и ф и ц и -рОЕанные типовые пролеты (УТП).
Использование УТС и УТП позволяло значительно упростить процесс проектирования зданий, сократить число типоразмеров конструкций и деталей и самих видов зданий, осуществлять изготовление основных сборных элементов по единому каталогу. Вместе с тем, использование
' и УТП связано с повышением затрат из-за несовпадения унифицированных параметров с требованиями технологии того или иного производства. Дальнейшее совершенствование унификации промышленных зданий было направлено на переход к межвидовой унификации. Межвидовая унификация предполагает объемно-планировочные и инструктивные решения, единые для производственных, общественных и сельскохозяйственных зданий.
В этом случае представляется возможность строительства зданий по единому каталогу типовых стандартных конструкций и изделий со значительно меньшим числом типоразмеров, чем предусмотрено каталогом для УТС и УТП.
