- •1 Намагниченность. Напряженность магнитного поля. Теорема о циркуляции вектора
- •2 Волновое уравнение. Фазовая скорость. Скорость продольной волны в газе. Дисперсия
- •6 Намагниченность. Напряженность магнитного поля. Теорема о циркуляции вектора h. Магнитная восприимчивость
- •6 Волновое уравнение. Фазовая скорость. Скорость продольной волны в газе. Дисперсия
- •1 Диамагнетики. Парамагнетики
- •2 Энергия упругой волны
- •1 Ферромагнетики. Температура Кюри. Петля гистерезиса…
- •2 Плотность потока энергии(Вектор Умова)
- •1 Ферромагнетики. Температура Кюри. Кривая намагничивания. Петля гистерезиса. Домены.
- •1 Движение заряженных частиц в магнитном поле.
- •2 Принцип суперпозиции волн. Стоячая волна
- •2 Принцип суперпозиции волн. Стоячая волна.
- •1 Эффект Холла
- •2 Интерференция волн
- •2 Интерференция волн.
1 Движение заряженных частиц в магнитном поле.
2 Принцип суперпозиции волн. Стоячая волна
Выражение для силы Лоренца позволяет найти ряд закономерностей движения заряженных частиц в магнитном поле. Направление силы Лоренца и направление вызываемого ею отклонения заряженной частицы в магнитном поле зависят от знака зарядаQ частицы. На этом основано определение знака заряда частиц, движущихся в магнитных полях.
Для вывода общих закономерностей будем считать, что магнитное полеоднородно и на частицы электрические поля не действуют. Если заряженная частица движется в магнитном поле со скоростью v вдоль линий магнитной индукции, то угол а между векторами v и В равен 0 или тт. Тогда по формуле сила Лоренца равна нулю, т.е. магнитное поле на частицу не действует и она движется равномерно и прямолинейно.
Если заряженная частица движется в магнитном поле со скоростью v ,перпендикулярной вектору В, то сила Лоренца F = Q [vB] постоянна по модулю и нормальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центростремительное ускорение. Отсюда следует, что частица будет двигаться по окружности, радиус г которой определяется из условия
откуда выразим r
2 Принцип суперпозиции волн. Стоячая волна.
Если среда, в которой распространяется одновременно несколько волн, линейна, т. е. ее свойства не изменяются под действием возмущений, создаваемых волной, то к ним применим принцип суперпозиции {наложения) волн: при распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов.
Стоячие волны — это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами, а в случае поперечных волн еще и одинаковой поляризацией.
Билет 10
1 Эффект Холла
2 Интерференция волн
Эффект Холла* (1879) — это возникновение в металле (или полупроводнике) с током плотностьюj,помещенном в магнитное полеВ,электрического поля в направлении, перпендикулярномВ к j.
Поместим металлическую пластинку с током плотностью j в магнитное полеВ, перпендикулярное j (рис. 174). При данном направленииj скорость носителей тока в металле — электронов — направлена справа налево. Электроны испытывают действие силы Лоренца (см. § 114), которая в данном случае направлена вверх. Таким образом, у верхнего края пластинки возникнет повышенная концентрация электронов (он зарядится отрицательно), а у нижнего — их недостаток (за-
яап
2 Интерференция волн.
Согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов называют когерентностью. Волны являются когерентными, если разность их фаз остается постоянной во времени.
Когерентными могут быть лишь волны, имеющие одинаковую частоту.
При наложении в пространстве двух (или нескольких) когерентных волн в разных его точках получается усиление или ослабление результирующей волны в зависимости от соотношения между фазами этих волн. Это явление называется интерференцией волн.
