Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
mc.docx
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
809.49 Кб
Скачать

5.3.9. Белый шум.

Рассмотренные ранее случайные процессы с независимыми приращениями — винеровский, однородный пуассоновский, обобщенный однородный пуассоновский — непрерывны по вероятности, но не дифференцируемы. Производные этих процессов можно рассматривать как обобщенные случайные процессы с независимыми значениями [17], корреляционные функции которых

где

Корреляционная функция (5.57) является по определению корреляционной функцией белого шума —случайного процесса с постоянной на всех частотах интенсивностью спектральной плотности мощности (см. п. 4.4.2).

Таким образом, имеется три класса белых шумов: гауссовский (производная винеровского процесса), пуассоновский и обобщенный пуассоновский (производные однородных пуассоновского и обобщенного пуассоновского процессов).

Марковский процесс - протекающий в системе случайный процесс, который обладает свойством: для каждого момента времени t0 вероятность любого состояния системы в будущем (при t>t0) зависит только от ее состояния в настоящем (при t= t0) и не зависит от того, когда и каким образом система пришла в это состояние (т.е. как развивался процесс в прошлом).

На практике часто встречаются случайные процессы, которые с той или иной степенью приближения можно считать Марковскими.

Любой марковский процесс описывают с помощью вероятностей состояний и переходных вероятностей.

Вероятности состояний Pk(t) марковского процесса – это вероятности того, что случайный процесс (система) в момент времени t находится в состоянии Sk:

 

Переходные вероятности марковского процесса – это вероятности перехода процесса (системы) из одного состояния в другое:

 

 

Марковский процесс называется однородным, если вероятности перехода за единицу времени не зависят от того, где на оси времени происходит переход.

Наиболее простым процессом является цепь Маркова – марковский случайный процесс с дискретным временем и дискретным конечным множеством состояний.

При анализе цепи Маркова составляют граф состояний, на котором отмечают все состояния цепи (системы) и ненулевые вероятности за один шаг.

Марковскую цепь можно представить себе так, как будто точка, изображающая систему, случайным образом перемещается по графу состояний, перетаскивая за один шаг из состояния в состояние или задерживаясь на несколько шагов в одном и том же состоянии.

Переходные вероятности цепи Маркова за один шаг записывают в виде матрицы P=||Pij||, которую называют матрицей вероятностей перехода или просто переходной матрицей.

Пример: множество состояний студентов специальности следующие:

S1 – первокурсник;

S2 – второкурсник …;

S5 – студент 5 курса;

S6 –специалист, окончивший вуз;

S7 – человек, обучавшийся в вузе, но не окончивший его.

Из состояния S1 за год возможны переходы в состояние S2 с вероятностью r1; S1 с вероятностью q1 и S7 с вероятностью p1, причем:

r1+q1+p1=1.

Построим граф состояний данной цепи Маркова и разметим его переходными вероятностями (отличными от нуля).

 

 

Составим матрицу вероятностей переходов:

 

Переходные матрицы обладают свойством:

- все их элементы неотрицательны;

- их суммы по строкам равны единице.

Матрицы с таким свойством называют стохастическими.

Матрицы переходов позволяют вычислить вероятность любой траектории цепи Маркова с помощью теоремы умножения вероятностей.

Для однородных цепей Маркова матрицы переходов не зависят от времени.

 

При изучении цепей Маркова наибольший интерес представляют:

- вероятности перехода за m шагов;

- распределение по состояниям на шаге m→∞;

- среднее время пребывания в определенном состоянии;

- среднее время возвращения в это состояние.

Рассмотрим однородную цепь Маркова с n состояниями. Для получения вероятности перехода из состояния Si в состояние Sj за m шагов в соответствии с формулой полной вероятности следует просуммировать произведения вероятности перехода из состояния Siв промежуточное состояние Sk за l шагов на вероятность перехода из Sk в Sj за оставшиеся m-l шагов, т.е.

 

 

Это соотношение для всех i=1, …, n; j=1, …,n можно представить как произведение матриц:

P(m)=P(l)*P(m-l).

Таким образом, имеем:

P(2)=P(1)*P(1)=P2

P(3)=P(2)*P(1)=P(1)*P(2)=P3 и т.д.

P(m)=P(m-1)*P(1)=P(1)*P(M-1)=Pm,

что дает возможность найти вероятности перехода между состояниями за любое число шагов, зная матрицу переходов за один шаг, а именно Pij(m) – элемент матрицы P(m) есть вероятность перейти из состояния Si в состояние Sj за m шагов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]