Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материалы функциональной электроники.Основное.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.43 Mб
Скачать
  1. Сегнетоэлектрики области применения

Сегнетоэлектриками называются вещества, обладающие спонтанной электрической поляризацией, которая может быть обращена приложением электрического поля E подходящей величены и определенного направления. Этот процесс, называемый переполяризацией, сопровождается диэлектрическим гистерезисом. Сегнетоэлектрики во многих отношениях являются электрическим аналогами ферромагнетиков, в которых намагниченность I может быть обращена магнитным полем H. Однако по своей микроскопической природе сегнетоэлектрики и ферромагнетики совершенно различны.

Сегнетоэлектрики отличаются большой диэлектрической проницаемостью, высоким пьезомодулем, наличием петли диэлектрического гистерезиса, интересными электрооптическими свойствами, и поэтому широко применяется во многих областях современной техники: радиотехнике, электроакустике, квантовой электронике и измерительной технике.

Сегнетоэлектрики обладают интересными электрическими свойствами; во многих твердых телах силы связи носят главным образом электрический характер, и тот факт, что в сегнетоэлектриках эти силы могут проявляется весьма ярко, существенно облегчает их изучение,

Наиболее распространена классификация сегнетоэлектриков в соответствии со структурой и связанной с ней механизмом возникновения спонтанной поляризации при фазовом переходе. По этому признаку они подразделяются на сегнетоэлектрики типа «смещения», у которых переход в сегнетоэлектрическую фазу связан со смещением ионов, и сегнетоэлектрики типа «порядок-беспорядок», у которых при переходе в сегнетоэлектрическую фазу происходит упорядочение имевшихся в исходной фазе диполей.

Сегнетоэлектрики типа «смещения» подразделяются на две основные группы:

группу перовскита и группу псевдоильменита.

Свойства:

Многие свойства сегнетоэлектриков отличаются от свойств которых следовало бы ожидать для однородных материалов. Это обусловлено наличием доменов точно также, как в ферромагнетиках. Так, например, характер тока переключения тесно связан с поведением доменов. Домены имеются как в монокристалле, так и в кристаллах керамического образца. Сегнетоэлектрический домен представляет собой макроскопическую область, в которой направление спонтанной поляризации одинаково и отличается от направления спонтанной поляризации в соседних доменах.

Разделяющие доменные стенки могут перемещаться внутри монокристалла; при этом одни домены увеличиваются, а другие уменьшаются. Теоретически было рассчитано Ландауэром и другими, что в титанате бария необходимое для переполяризации монокристалла поле должно составлять около 200 кВ/см, однако практически переполяризация легко осуществляется в поле порядка 1 кВ/см, очевидно, благодаря тому, что в кристалле всегда присутствуют небольшие домены с обратным направлением поляризации. При переполяризации эти домены растут либо за счет перемещения доменных стенок, либо за счет некоторого сходного процесса

Применение

В техническом применении сегнетоэлектриков наметилось несколько направлений, важнейшими из которых следует считать:

1) изготовление малогабаритных низкочастотных конденсаторов с большой удельной емкостью;

2) использование материалов с большой нелинейностью поляризации для диэлектрических усилителей, модуляторов и других управляемых устройств;

3) использование сегнетоэлементов в счетно-вычислительной технике в качестве ячеек памяти;

4) использование кристаллов сегнето- и антисегнетоэлектриков для модуляции и преобразования лазерного излучения;

5) изготовление пьезоэлектрических и пироэлектрических преобразователей.

Варикапы

Варикап - это очередная разновидность полупроводникового диод, который способен изменять свою внутреннюю емкость прямо пропорционально уровню приложенного обратного напряжения смещения p-n перехода от единиц до сотен пикофарад. Техник радиолюбителям о медицинской техники и не только 

Принцип действия:

Условно графическое изображение варикапа на принципиальных схемах сочетает в себе обозначение диода и емкости конденсатора. Поэтому варикап еще и называют - емкостной диод. Если вспомнить принцип работы p-n перехода, то мы упоминали о том, что в нем присутствует так называемая барьерной ёмкостью. Сама по себе барьерная ёмкость несет паразитные свойства. Но и этот существенный минус смогли обратить в плюс. В результате этой попытки избавиться от паразитной емкости и был открыт варикап - так называемый гибрид диода и переменного конденсатора, емкость которого можно регулируется с помощью приложенного обратного напряжения Варикап работа и устройство Варикап - это очередная разновидность полупроводникового диод, который способен изменять свою внутреннюю емкость прямо пропорционально уровню приложенного обратного напряжения смещения p-n перехода от единиц до сотен пикофарад. Принцип работы варикапа Условно графическое изображение варикапа на принципиальных схемах сочетает в себе обозначение диода и емкости конденсатора. Поэтому варикап еще и называют - емкостной диод. Если вспомнить принцип работы p-n перехода, то мы упоминали о том, что в нем присутствует так называемая барьерной ёмкостью. Сама по себе барьерная ёмкость несет паразитные свойства. Но и этот существенный минус смогли обратить в плюс. В результате этой попытки избавиться от паразитной емкости и был открыт варикап - так называемый гибрид диода и переменного конденсатора, емкость которого можно регулируется с помощью приложенного обратного напряжения. Как мы уже знаем из основ работа диода, при подаче обратного напряжения на него, он закрыт и электрический ток через него не течет . Т.е p-n переход выполняет функцию изолятора, толщина которого почти прямо пропорциональна величине обратного напряжения Uобр. Регулируя Uобр, мы меняем толщину p-n слоя. А так как электрическая емкость конденсатора зависит от площади обкладок, и в данном случае от площади p-n слоя, и расстояния между обкладками – в данном случае толщины перехода, то появляется отличная возможность регулировать емкость p-n слоя с помощью обратного напряжения. Как только на варикап подают обратное напряжение смещения, изменяется величина емкости потенциального барьера p-n перехода. В номинальном значении она снижается с ростом приложенного обратного напряжения смещения. У варикапов емкость может меняться в очень широком диапазоне, от 3 до 10 раз. Кроме того у емкостных диодов очень низкие потери электрической энергии и низкий ТКЕ (температурный коэффициент емкости) поэтому они отлично подходят для работы на очень высоких частотах, где емкость измеряется долями пикофарад. Это очень важный момент, так как если бы емкость была нестабильна, то частота колебательного контура «плавала», т.е. менялась. А это неприемлемо! Рассмотрим упрощенную типовую схема управления емкостным диодом. Для отображения ссылки для скачки, схемы, картинки, формулы и т.п отключите Блокировщик Рекламы!!! В ней R2 - переменное сопротивление с помощью плавно изменяется сопротивление резистора, а как следствие, и величина обратного напряжения смещения Uобр, следующего на варикап. Емкость С1 не пропускает на индуктивность L1 постоянного напряжения. Сопротивление R1 снижает шунтирующее действие R2 на колебательный контур, что позволяет сохранить его резонансные свойства. Как видим по схеме, емкость варикапа входит в состав колебательного контура. Меняя ее, мы изменяем свойства колебательного контура и частоту его настройки. Так и осуществляется электронная настройка на частоту в современных схемах приемников (Схема УКВ приемника на микросхеме TDA 7000) В меню телевизоров имеется функция – автонастройка телеканалов. Выбираем ее, и весь телевизионный диапазон сканируется на наличие вещательных программ - телеканалов. Так вот эту функции просто бы не возможно было бы использовать, если бы не был открыт емкостной диод. В схеме телевизора формируется плавно изменяющееся напряжение настройки, которое и поступает на варикап. За счет него изменяются параметры колебательного контура тюнера и он настраивается на вещательный канал. Затем найденные каналы, а точнее напряжения обратного смещения запоминаются, и мы можем переключаться на любой из них с помощью ПДУ в любой момент. В телевизионной и специальной радио техники очень часто применяются сдвоенные и строенные варикапы с общим катодом. Вот так они обозначаются на принципиальных схемах. Они применяются, в модулях радиоприемных устройств, где требуется одновременно настраивать входной контур и гетеродин с помощью одного переменного сопротивления. Встречаются так же обычные сборки, когда в одном корпусе имеется несколько емкостных диодов не связанных между собой Параметры варикапа Несмотря на то, что варикап это полупроводниковый диод, по сути это все-таки конденсатор и поэтому параметры, связанные с емкостью и являются системо образующими. Вот лишь часть наиболее часто используемая из них: Несмотря на то, что варикап это полупроводниковый диод, по сути это все-таки конденсатор и поэтому параметры, связанные с емкостью и являются системо образующими. Вот лишь часть наиболее часто используемая из них: Они применяются, в модулях радиоприемных устройств, где требуется одновременно настраивать входной контур и гетеродин с помощью одного переменного сопротивления. Встречаются так же обычные сборки, когда в одном корпусе имеется несколько емкостных диодов не связанных между собой

Пироэлектрики.

К активным диэлектрикам относятся  п и р о э л е к т р и к и, т.е. диэлектрики, обладающие пироэлектрическим эффектом. 

Пироэлектрический эффект состоит в изменении спонтанной поляризованности диэлектриков при изменении температуры. К типичным линейным пироэлектрикам относятся турмалин и сульфат лития. Пироэлектрики спонтанно поляризованы, но в отличие от сегнетоэлектриков направление их поляризации не может быть изменено внешним электрическим полем. При неизменной температуре спонтанная поляризованность пироэлектрика скомпенсирована свободными зарядами противоположного знака за счет процессов электропроводности и адсорбции заряженных частиц из окружающей атмосферы. При изменении температуры спонтанная поляризованность изменяется, что приводит к освобождению некоторого заряда на поверхности пироэлектрика, благодаря чему в замкнутой цепи возникает электрический ток.

Пироэффект используется для создания тепловых датчиков и приемников лучистой энергии, предназначенных, в частности, для регистрации инфракрасного и СВЧ-излучения.

Значительным пироэффектом обладают некоторые сегнетоэлектрические кристаллы, к числу которых относятся ниобат бария-стронция, триглицинсульфат — ТГС, ниобат и танталат лития. Пироэлектрический эффект проявляется также в поляризованной, т.е. подвергнутой действию постоянного электрического поля, сегнетокерамике, а также у некоторых полимеров, например у поляризованных поливинилденфторида и поливинилиденхлорида.

Наиболее важные группы пироэлектриков.

К первой группе относятся сегнетоэлектрики. Однако для использования их пироэлектрических свойств они должны быть монодоменизированы. В свою очередь монодоменизация может быть достигнута в процессе выращивания сегнетоэлектриков или другими способами, включая температурную поляризацию. К важнейшим пироэлектрикам этого класса материалов относится триглицинсульфат ТГС и изоморфные ему соединения со специальными добавками для монодоменизации, ниобат и танталат лития, тонкие пленки нитрата калия в сегнетофазе, керамические титанат свинца и цирконат–титанат свинца с различными добавками. Все эти материалы являются нелинейными диэлектриками, в которых пирокоэффициент, обусловленный первичным пироэффектом, достигает максимума вблизи точки Кюри.

Вторая группа пироэлектриков – это линейные пироэлектрики, направление спонтанной поляризации в которых одинаково по всему объему кристалла и не может быть изменено электрическим полем. Спонтанная поляризация Рс в таких кристаллах не снимается до нуля, как в сегнетоэлектриках. К таким пироэлектрикам относятся соединения типа АIIBVI со структурой вюрцита, например, монокристаллы CdS, а также сульфат лития, тетраборат лития и др. В пирокоэффициентах этих кристаллов наблюдается существенный вклад не только от первичного, но и от вторичного пьезоэффекта.

К третьей группе относятся пленочные полярные полимеры типа ПВДФ, которые весьма перспективны благодаря возможности получения из них тонких, эластичных, прочных пленок. Пироэлектрические свойства пленка приобретает  после ее растяжения в 3¸5 раз  и поляризации при температуре около 1300С в поле порядка 1 МВ/см.  Некоторые сравнительные характеристики  ряда важнейших пироэлектриков приведены в таблице (по Резу И.С. и Поплавко Ю. М).

Фотоварикапы

В радиотехнике и в измерительных схемах применяются полупроводниковые светочувствительные емкость (фотоварикапы), позволяющие совместить в одном приборе преобразование световой энергии в электрический сигнал и параметрическое усиление этого сигнала.

Важнйшим параметром ФВ является коэффициент световой чувствительности, характеризующий относительное изменение емкости на единицу светового потока Ф. Ввентельном режиме при малых фототоках коэффициент СЧ вычесляется:

Где сопротивление p-n-перехода при v=0Ом, – чувствительность ФВ к световому потоку. Температурный коэффициент емкости в вентельном режиме ~10-3 К-1.

ФВ применялись для усиления слабых фототоков и для индикации перемещения слабых световых лучей.

ТЕРМОПАРЫ

  1. Термоэлектрические явления

Принцип действия. Основные соотношения.

Явление термоэлектричества, открытое в начале прошлого века русским академиком Эпинусом, заключается в следующем. Если составить цепь из двух различных проводников (или полупроводников) АиВ, соединив их между собой концами (рис.1), причем температуруt1 одного места соединения сделать отличной от температурыt0другого, то в цепи появится э.д.с., называемая термоэлектродвижущей силой (термо-э.д.с.) и являющаяся разностью функций температур мест соединения проводников:

Подобная цепь называется термоэлектрическим преобразователем, или иначетермопарой ;проводники, составляющие термопару, -термоэлектродами, а места их соединения –спаями.

Термопара может быть применена для измерения температуры. Если один спай термопары, называемый рабочим спаем, поместить в среду с температуройt1, подлежащей измерению, а температуру другого – нерабочего – спая поддерживать постоянной, то и независимо от того, каким образом произведено соединение термоэлектродов (спайкой, сваркой и т.д.). Последняя взаимосвязь и положена в основу измерения температур при помощи термопар. Таким образом, естественной входной величиной термопары является температура t1 ее рабочего спая, а выходной величиной термо-э.д.с., которую термопара развивает при строго постоянной температуреt0 нерабочего спая.

Приборы, представляющие собой сочетание термопары и указателя, используемые для измерения температуры, часто называют не термометрами, а термоэлектрическими пирометрами, хотя никакого принципиального различия между этими терминами нет.

Включить указатель в цепь термопары можно как по наиболее часто применяемой схеме рис.2,а (здесь два нерабочих спая), так и по схеме рис.2,б. Для того чтобы включение в цепь термопары указателя (т.е. третьего проводника) не изменило значения термо-э.д.с., места соединения указателя с термоэлектродами должны иметь одинаковую температуру.

Главные преимущества термопар: - широкий диапазон рабочих температур, это самый высокотемпературный из контактных датчиков. - спай термопары может быть непосредственно заземлен или приведен в прямой контакт с измеряемым объектом. - простота изготовления, надежность и прочность конструкции.  Недостатки термопар: - необходимость контроля температуры холодных спаев. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС. - возникновение термоэлектрической неоднородности в проводниках и, как следствие, изменение градуировочной характеристики из-за изменения состава сплава в результате коррозии и других химических процессов.  - материал электродов не является химически инертным и, при недостаточной герметичности корпуса термопары, может подвергаться влиянию агрессивных сред, атмосферы и т.д. - на большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей. - зависимость ТЭДС от температуры существенно не линейна. Это создает трудности при разработке вторичных преобразователей сигнала. - когда жесткие требования выдвигаются к времени термической инерции термопары, и необходимо заземлять рабочий спай, следует обеспечить электрическую изоляцию преобразователя сигнала для устранения опасности возникновения утечек через землю.

Эффект Пельтье и эффект Зеебека.

Существует явления, которые в некотором роде считают обратным возникновению термоэлектрического тока. Если составить цепь из двух разных по природе металлов, и пропустить по ней электрический ток, то один из спаев начнет нагреваться, а другой нет – это эффект называется Пельтье. Чем больше термоэлектродвижущая сила образованного при этом термоэлемента, тм более резко выражен эффект Пельтье.

Полупроводниковый термоэлемент представляет собой два разнотипных полупроводника, концы которых с одной стороны соединены проводящей пластиной (например, Сu), а вторые концы разомкнуты и к ним можно присоединять измерительный прибор (например, гальванометр) или источник постоянного напряжения (рис. 3.5.).

Если к р - столбику полупроводника приложите минус (–) источника питания, а к n-столбику плюс (+), то положительные носители заряда будут двигаться вниз к минусу; отрицательные заряды – к плюсу, тоже вниз. При этом возникает эффект Пельтье, т.е. одни из спаев (верхний) будет охлаждаться, а второй спай (нижний) нагреваться.

Рис. 3.5. Эффект Пельтье (а) и Зеебека (б)

Действительно, это будет иметь место и вот почему: через элемент будет протекать ток; носители заряда, которые идут вниз, в нижнем спае встречаясь, будут рекомбинировать, исчезать как носители заряда. Но ток протекает через элемент непрерывно, значит в верхнем спае должно возникать (генерироваться) столько же пар, сколько их рекомбинировало в нижнем спае. При генерации идет затрата энергии, значит верхний спай будет охлаждаться; при рекомбинации идет выделение энергии – значит нижний спай будет нагреваться. Нагрев одного спая и охлаждение другого можно подсчитать по формуле Пельтье:

QП = П∙I∙τ, (3.10)

где QП– теплота Пельтье, которая на одном спае выделяется (нагрев), а на другом поглощается (охлаждение), Дж;

I – протекающий ток, А;

τ– время протекания тока, с.

В материале, по которому протекает ток, выделяется теплота Джоуля-Ленца, причем независимо от того или другого спая.

Она определяется формулой

QД-Л = 0,24∙I2∙R∙τ,(3.11)

где QД-Л– теплота Джоуля-Ленца, Дж;

R– сопротивление материала, Ом.

Как видим и QПиQД-Лзависят от величины протекающего тока.

Эффект Зеебека показан с помощью рис. 3.5, б. Если один из спаев термоэлемента, например верхний (1), нагреть, а спай (2) охладить, то на разорванном нижнем спае появится постоянная разность потенциалов. Это произойдет в результате того, что носители заряда при наличии градиента температуры спаев будут двигаться направленно (от нагретого спая к холодному). На нижних концах столбиков термоэлемента скопятся носители заряда: на р - дырки (положительные), наn– электроны (отрицательные). Скопление противоположных носителей заряда создает электрическое поле.

Напряжение на таком термоэлементе определяется формулой Зеебека

U = A∙(Тнагр. – Тохл.),(3.12)

где U– напряжение;

А– коэффициент термо-ЭДС для данных пар полупроводниковых столбиков;

Тнагр.– температура нагретого спая;

Тохл.– температура охлаждаемого спая.

В термоэлектрических явлениях взаимодействуют электрические и тепловые поля. К материалам для изготовления, например, столбиков термоэлементов, предъявляются требования – иметь высокую электропроводность, т.к. эффекты зависят от величины тока, протекающего в них, но в то же время материал не должен обладать высокой теплопроводностью, чтобы тепло от нагретого спая не ухудшало эффекта охлаждения другого спая. Эти требования противоречивые, но им удовлетворяют сложные соединения типа Bi2Te3∙Sb2Se3и подобные им.

Явление Томсона

При прохождении тока понеравномерно на­гретому проводнику должно происходить дополнительное выделение (поглощение) теплоты, аналогичной теплоте Пельтье. Это явление получило название явления Томсона. Его можно объяснить следую­щим образом. Так как в более нагретой части проводника электроны имеют боль­шую среднюю энергию, чем в менее на­гретой, то, двигаясь в направлении убыва­ния температуры, они отдают часть своей энергии решетке, в результате чего про­исходит выделение теплоты Томсона. Если же электроны движутся в сторону воз­растания температуры, то они, наоборот, пополняют свою энергию за счет энергии решетки, в результате чего происходит поглощение теплоты Томсона.