- •Термодинамика и кинетика полиморфизма[править | править вики-текст]
- •Линейные дефекты кристаллического строения
- •Как выбрать температуру нагрева под закалку
- •Белые чугуны, их область применения.
- •. Серые чугуны, их маркировка и область применения.
- •Медь и ее сплавы. Классификация и маркировка медных сплавов.
- •Классификация[править | править вики-текст]
- •Маркировка по гост[править | править вики-текст]
- •Высокопрочные чугуны, их маркировка и область применения.
Белые чугуны, их область применения.
В белом чугуне весь углерод находится в связанном состоянии в виде карбида железа. Такой чугун в изломе имеет белый цвет и характерный металлический блеск. Структура состоит из перлита, ледебурита и избыточного цементита, поэтому чугун отличается высокой твердостью, хрупкостью, низкой прочностью и трудоемкостью механической обработки. Из белого чугуна делают отливки деталей с последующим отжигом на ковкий чугун. Белые чугуны применяют для производства стали, поэтому их называют передельными чугунами.
Ограниченное применение имеют отбеленные чугуны — отливки из серого чугуна со слоем белого чугуна в виде твердой корки на поверхности. Из них изготовляют прокатные валки, тормозные колодки и другие детали, работающие в условиях износа.
. Серые чугуны, их маркировка и область применения.
В серых чугунах углерод в значительной степени или полностью находится в свободном состоянии в форме пластинчатого графита. Из-за этого излом имеет серый цвет.
В зависимости от распада цементита различают ферритный, феррито-перлитный и перлитный серые чугуны. Серый чугун обладает высокими литейными свойствами, хорошо обрабатывается, менее хрупок, чем белый чугун, ему присущи хорошие антифрикционные свойства, что объясняется пористым строением и наличием графита. Иногда в структуре чугуна наряду с графитом содержится ледебурит. Такой серо-белый чугун называют половинчатым. Основные его свойства: высокая твердость, хрупкость и низкая прочность.
Серый чугун широко применяют в автотракторном и сельскохозяйственном машиностроении для производства отливок, поэтому его называют литейным. Из него изготавливают станины металлорежущих станков, блоки и гильзы автомобильных и тракторных двигателей, поршневые кольца, корпуса и др. Маркируется серый чугун по ГОСТ 1412-79 буквами СЧ и цифрами, которые обозначают предел прочности при растяжении. Например, марка СЧ18 (всего по ГОСТу 11 марок) показывает, что чугун этой марки имеет Gв=176 МПа.
Выбор марки чугунов для конкретных условий работы обусловливается совокупностью технологических и механических свойств. Ферритные серые чугуны СЧ10, СЧ15, СЧ18 предназначены для слабо- и средненагруженных деталей: крышки, фланцы, маховики, диски сцепления и др. Феррито-перлитные СЧ20, СЧ21, СЧ25 применяют для деталей, работающих при повышенных статических и динамических нагрузках: блоков цилиндров, картеров двигателя, поршней цилиндров, барабанов сцепления и др. Перлитные серые модифицированные чугуны СЧЗ0, СЧ35, СЧ40, СЧ45 обладают наиболее высокими механическими свойствами и их используют для изготовления гильз цилиндров, распределительных валов и др.
47. Классификация и маркировка медных сплавов.
Медь и ее сплавы. Классификация и маркировка медных сплавов.
Медь-металл розовато-красного цвета, плотность её 8,95г/см3, температура плавления1083С, кристаллизуется в гранецентрированной решётке и не имеет полиморфных превращений. На воздухе при наличии влаги углекислого газа медь медленно окисляется, покрываясь зелёной плёнкой так называемой патины (щелочной карбонат меди). Эта плёнка в определённой мере защищает медь от дальнейшего окисления. Медь принято считать эталоном электропроводности теплопроводности по сравнению другими металлами. Медь легко обрабатывается давлением, плохо резанием, имеет невысокие литейные свойства, плохо сваривается, но легко подвергается пайке. Применяется в виде листов, прутков проволоки. Механические свойства меди существенно зависят от её состояния.
Маркировка:«МТ» - твердая медь, «ММ» - мягкая медь.Маркируется медь буквой М и цифрами, зависящими от содержания примесей. Медь марок М00 (0,01% примесей),М0 (0,05%примесей), М1(0,1%примесей) используется для изготовления проводников электрического тока, медь М2 (0,3%примесей) – для производства высококачественных сплавов меди,М3 (0,5%примесей)- для сплавов обыкновенного качества.
Латуни – двойные многокомпонентные медные сплавы с основным легирующим элементом – цинком. По сравнению с медью обладает более высокой прочностью и коррозионной стойкостью. Простые латуни обозначают буквой Л и цифрой, показывающей содержание меди в процентах. В специальных латунях после буквы Л пишут заглавную букву дополнительных легирующих элементов (А - алюминий, Б - бериллий, Ж - железо, К - кремний, Мц - марганец, Н - никель, О - олово, С - свинец, Ц - цинк, Ф. – фосфор) и через тире после содержания меди указывают содержание легирующих элементов в процентах. Латуни разделяют на литейные и деформируемые. Латуни, за исключением свинцовосодержащих, легко поддаются обработке давлением в холодном и горячем состоянии. Все латуни хорошо паяются твердыми и мягкими припоями.
Бронзами называют медные сплавы, в которых основными легирующими элементами являются различные металлы, кроме цинка. Маркируют бронзы буквами Бр, за которыми следуют заглавные буквы легирующих элементов, а через тире цифры, показывающие их процентное содержание.По сравнению с латунью бронзы обладают более высокой прочностью, коррозионной стойкостью и антифракционными свойствами. Они весьма стойки на воздухе, в морской воде, растворах большинства органических кислот, углекислых растворах.Большинство бронз (за исключением алюминиевых) хорошо поддаются сварке и пайке твердыми и мягкими припоями.
48. Деформируемые алюминиевые сплавы, упрочненные наклепом.
К таким сплавам относятся дюралюмины ( сложные сплавы систем алюминий – медь –магний или алюминий – медь – магний – цинк). Они имеют пониженную коррозионную стойкость, для повышения которой вводится марганец.
Дюралюмины обычно подвергаются закалке с температуры 500oС и естественному старению, которому предшествует двух-, трехчасовой инкубационный период. Максимальная прочность достигается через 4…5 суток.
Широкое применение дюралюмины находят в авиастроении, автомобилестроении, строительстве.
Высокопрочными стареющими сплавами являются сплавы, которые кроме меди и магния содержат цинк. Сплавы В95, В96 имеют предел прочности около 650 МПа. Основной потребитель – авиастроение (обшивка, стрингеры, лонжероны).
Ковочные алюминиевые сплавы АК:, АК8 применяются для изготовления поковок. Поковки изготавливаются при температуре 380…450oС, подвергаются закалке от температуры 500…560oС и старению при 150…165oС в течение 6…15 часов.
В состав алюминиевых сплавов дополнительно вводят никель, железо, титан, которые повышают температуру рекристаллизации и жаропрочность до 300oС.
Изготавливают поршни, лопатки и диски осевых компрессоров, турбореактивных двигателей.
49. Твердые сплавы. Маркировка, состав, структура, область применения
Твёрдые сплавы — твёрдые и износостойкие металлокерамические материалы, полученные методами порошковой металлургии, способные сохранять эти свойства при 900—1150 °C. В основном изготовляются из высокотвёрдых и тугоплавких материалов на основе карбидов вольфрама, титана, тантала, хрома, связанные кобальтовой или никелевой металлической связкой, при различном содержании компонентов.
Твёрдые сплавы различают по металлам карбидов, в них присутствующих: вольфрамовые — ВК2, ВК3,ВК3М, ВК4В, ВК6М, ВК6, ВК6В, ВК8, ВК8В, ВК10, ВК15, ВК20, ВК25; титано-вольфрамовые — Т30К4, Т15К6, Т14К8, Т5К10, Т5К12В; титано-тантало-вольфрамовые — ТТ7К12, ТТ11К8Б; безвольфрамовые ТНМ20, ТНМ25, ТНМ30.
По химическому составу твёрдые сплавы классифицируют:
вольфрамокобальтовые твёрдые сплавы (ВК);
титановольфрамокобальтовые твёрдые сплавы (ТК);
титанотанталовольфрамокобальтовые твёрдые сплавы (ТТК).
1 группа - сплавы, содержащие
карбид вольфрама и кобальт. Обозначаются буквами ВК, после которых цифрами указывается процентное содержание в сплаве кобальта. К этой группе относятся следующие марки:
ВКЗ, ВКЗМ, ВК6, ВК6М, ВК6ОМ, ВК6КС, ВК6В, ВК8, ВК8ВК, ВК8В, ВК10КС, ВК15, ВК20, ВК20КС, ВК10ХОМ, ВК4В.
2 группа - титановольфрамовые сплавы, имеющие в своем составе карбид титана, карбид вольфрама и кобальт. Обозначается буквами ТК, при этом цифра, стоящая после букв Т обозначает % содержание карбидов титана, а после буквы К - содержание кобальта. К этой группе относятся следующие марки: Т5К10, Т14К8, Т15К6, ТЗ0К4.
3 группа — титанотанталовольфрамовые сплавы, имеющие в своем составе карбид титана, тантала и вольфрама, а также кобальт и обозначаются буквами ТТК, при этом цифра, стоящая после ТТ % содержание карбидов титана и тантала, а после буквы К - содержание кобальта. К этой группе относятся следующие марки: ТТ7К12, ТТ20К9.
4 группа — сплавы с износостойкими покрытиями. Имеют буквенное обозначение ВП. К этой группе относятся следующие марки: ВП3115 (основа ВК6), ВП3325 (основа ВК8), ВП1255 (основа ТТ7К12).
Твёрдые сплавы применяемые для обработки металлов резанием: ВК6, ВКЗМ, ВК6М, ВК60М, ВК8, ВК10ХОМ, Т30К4, Т15К6, Т14К8, Т5К10, ТТ7К12, ТТ20К9.
Твёрдые сплавы применяемые для бесстружковой обработки металлов и древесины, быстроизнашивающихся деталей машин, приборов и приспособлений: ВКЗ, ВКЗМ, ВК6, ВК6М, ВК8, ВК15, ВК20, ВК10КС. ВК20КС.
Твёрдые сплавы применяемые для оснащения горного инструмента: ВК6В, ВК4В, ВК8ВК, ВК8, ВК10КС, ВК8В,ВК11ВК,ВК15.
50. Углеродистые и низкоуглеродистые инструментальные стали. Маркировка, состав структура, область применения
Инструментальные углеродистые стали, выпускаемые по ГОСТ 1435-74, имеют следующие марки: У7, У7А, У8, У8А, У9, У9А, У10, У10А, У11, У11А, У12, У12А, У13, У13А. Буква «У» обозначает углеродистая, а цифра после буквы — десятые доли процента углерода (например, сталь марки У10 содержит в среднем 1,0% С). Буква А обозначает высокое качество стали (Sи Р < 0,03%). Инструменты (зубила, штампы, слесарные молотки и т. п.), подвергаемые ударам, должны обладать некоторой вязкостью; их изготовляют из стали марок У7А и У8А. Высокоуглеродистую (заэвтектоидную) сталь марок У9А, У10А и другие применяют для инструментов (напильники, шаберы, калибры и т. п.), которые должны иметь высокую твердость и износостойкость.
51. Магниевые и титановые сплавы. Маркировка, состав, структура, область применения
Магний представляет собой легкий металл серебристого цвета, плотность 1.74 г/см3, температура плавления 651 °С. При температуре, несколько превышающей температуру плавления, легко воспламеняется и горит ярко-белым пламенем.
В связи с малой прочностью и слабой стойкостью против коррозии магний в качестве конструкционного материала не применяется, в основном он используется для получения магниевых сплавов.
Магниевые сплавы являются весьма легкими конструкционными материалами, поэтому их широко применяют в авиационной и других отраслях промышленности.
По технологическому признаку магниевые сплавы делятся на деформируемые и литейные.
Деформируемые магниевые сплавы MA1, MA2, МАЗ, МА5, МА6 применяют для изготовления полуфабрикатов-прутков, полос, труб, листов и т. д., а также штамповок и поковок.
Литейные магниевые сплавы (ГОСТ 2856-68*) нашли широкое применение для производства фасонного литья. Плотность этих сплавов составляет 1,75-1.83 г/см3, хорошо обрабатываются резанием, но литейные свойства их ниже литейных свойств алюминиевых сплавов. К недостаткам литейных магниевых сплавов следует отнести пониженную коррозионную стойкость во влажной среде, поэтому литейные, как и деформируемые магниевые сплавы, защищают оксидными пленками и лакокрасочными покрытиями. Марки литейных магниевых сплавов: МЛ1, МЛ2, МЛЗ, МЛ4, МЛ5, МЛ6.
Маркировка магниевых сплавов состоит из букв, обозначающей соответствующий сплав, буквы, указывающей способ получения (А-для деформируемых, Л-для литейных), и цифры, обозначающей порядковый номер сплава.
Титановые сплавы являются новым металлическим материалом, занимающим видное место. Температура плавления титана 1660 °С. плотность 4.5г/см3 ,с углеродом титан образует очень твердые карбиды. Титан удовлетворительно куется, прокатывается и прессуется, обладает высокой стойкостью против коррозии в пресной и морской воде, а также в некоторых кислотах.
Наибольшее значение имеют сплавы титана с хромом, алюминием, ванадием (в небольшом количестве) при малом содержании углерода (десятые доли процента). Например сплав ВТ2, содержащий 1-2% алюминия и 2-3% хрома, а также сплав ВТ5, содержащий 5% алюминия, имеют высокую прочность и пластичность, применяется для изготовления листового материала. Сплав ВТЗ, содержащий 5% алюминия, 3% хрома, имеет жаропрочность до 400 °С. Многие сплавы титана подвергаются термической обработке, чем достигается еще большая прочность, соответствующая прочности высоколегированных сталей.
52. Классификация и маркировка алюминиевых сплавов.
Алюми́ниевые спла́вы — сплавы, основной массовой частью которых является алюминий. Самыми распространенными легирующими элементами в составе алюминиевых сплавов являются: медь, магний, марганец, кремний и цинк. Реже — цирконий, литий, бериллий, титан. В основном алюминиевые сплавы можно разделить на две основные группы: литейные сплавы и деформируемые (конструкционные). В свою очередь, конструкционные сплавы подразделяются на термически обработанные и термически необработанные. Большая часть производимых сплавов относится к деформируемым, которые предназначены для последующей ковки и штамповки[1].
