Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 6+7.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
153.77 Кб
Скачать

Модели простых и сложных процентов

При расчете наращения и дисконтирования денежных средств могут использоваться модели простых и сложных процентов.

Простой процент представляет собой сумму, которая начисляется от исходной величины стоимости вложения в конце одного периода, определяемого условиями вложения средств (месяц, квартал, год). Расчет суммы простого процента S в процессе наращения вложений проводят по формуле 7.3.

S=PVkt (7.3),

где k норма доходности вложенных средств, выражаемая десятичной дробью;

t число периодов времени, в течение которых вложенные средства будут находиться в обороте.

По окончании каждого периода инвестиция увеличивается на величину kt. Поэтому будущая стоимость инвестиции FV с учетом начисленных процентов определяется по формуле.

FV=PV+S=PV(1+kt) (7.4)

Множитель (1 + kt) представляет собой коэффициент наращения простых процентов.

При расчете суммы простого процента в процессе дисконтирования, или суммы дисконта D, используется формула 7.5.

D=FV-FV1/(1+kt) (7.5).

Сложным процентом называется сумма, которая образуется в результате вложения средств при условии, что сумма начисленного простого процента не выплачивается после каждого периода, а присоединяется к сумме основного вклада и в последующем доход исчисляется с общей суммы, включающей также начисленные и невыплаченные проценты.

Начисление сложных процентов с целью нахождения величины будущей стоимости в инвестиционном анализе называют компаундингом.

Расчет суммы вложения в процессе его наращения по сложным процентам производится по формуле (7.1), а в процессе дисконтирования — по формуле (7.2). Сумма сложного процента определяется как разность между окончательной и первоначальной суммами вклада.

В финансово-экономических расчетах коэффициент (1 + k)t называют коэффициентом, или множителем наращения, а также ставкой процента, нормой доходности, нормой прибыли, а коэффициент 1/(1 + k)tкоэффициентом дисконтирования, дисконтной ставкой, дисконтом, учетной ставкой. Очевидно, что оба коэффициента связаны между собой, поэтому, зная один показатель, можно определить другой.

Для простоты вычислений разработаны специальные таблицы, с помощью которых при заданных параметрах указанных коэффициентов и периодов инвестирования можно определить текущую и будущую стоимость денежных средств.

Понятие аннуитета

Одним из широко используемых в финансово-экономических расчетах понятий является аннуитет.

Аннуитет представляет собой такой вид денежных потоков, которые осуществляются последовательно в равных размерах через равные периоды времени. Аннуитетные платежи имеют место при оценке долевых и долговых ценных бумаг, инвестиционных проектов. Примером аннуитета могут быть ежеквартальные выплаты процентов по облигациям, депозитным и сберегательным сертификатам, арендная плата и др.

Для определения будущей и настоящей стоимости аннуитета могут быть использованы формулы (7.1) и (7.2). Вместе с тем вследствие специфики этой формы, заключающейся в равномерности поступлений, эти формулы могут быть упрощены. Формула для определения будущей стоимости аннуитета имеет вид

Sa=Aka (7.6),

где Sa — будущая стоимость аннуитета на конец определенного периода;

А — сумма аннуитетного платежа;

ka — множитель наращивания аннуитета, определяемый по специальным таблицам при заданных параметрах процентной ставки и числа периодов.

Обратная формула для определения настоящей стоимости аннуитета

Pa=A/Ra (7.7),

где Рa настоящая стоимость аннуитета;

Rа — дисконтный множитель аннуитета, определяемый по специальным таблицам при заданных параметрах дисконтной ставки и числа периодов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]