- •1.Газообразное состояние вещества. Газовые законы. Химический состав атмосферного воздуха.
- •2.Жидкое состояние вещества. Уникальные свойства воды. Причины аномально высокой температуры плавления льда и кипения жидкой воды.
- •3.Твердые вещества в аморфном и кристаллическом состоянии. Типы кристаллических решеток.
- •4.Металлы, их физико-механические и электрические свойства
- •7.Типы и характеристики химической связи. Положения метода валентных связей.
- •8.Пространственная структура молекул. Гибридизация. Модели молекул метана, воды и аммиака.
- •9.Термодинамика, ее основные понятия: внутренняя энергия, температура, теплота, работа. Закон сохранения энергии. Первое начало термодинамики.
- •10.Энергетические эффекты реакций. Термохимические расчеты. Закон Гесса.
- •11.Второе начало термодинамики. Самопроизвольные процессы.
- •12.Обратимые и необратимые химические реакции. Химическое равновесие. Принцип Ле-Шателье.
- •13.Фазовые равновесия. Диаграммы состояния.
- •14.Скорость химических реакций. Молекулярность и порядок химической реакции. Закон действующих масс.
- •15.Влияние температуры на скорость химических реакций. Уравнение Вант-Гоффа. Энергия активации.
- •16.Механизмы химических реакций. Цепные реакции.
- •17.Катализатор и механизмы катализа. Энергетическая диаграмма каталитического процесса.
- •18.Общие свойства растворов. Закон Рауля. Осмотическое давление.
- •19.Электролиты. Степень диссоциации. Теория кислот и оснований.
- •20. Электролитическая диссоциация воды. Водородный показатель. Кислотно-основные индикаторы.
- •21. Реакции водных растворов электролитов: нейтрализации, осаждения, окислительно-восстановительные с участием металлов, гидролиза солей.
- •22.Окислительно-восстановительные процессы. Гальванический элемент. Уравнение Нернста.
- •23. Электролиз. Законы Фарадея. Электролиз расплавов и растворов на примере сульфата натрия.
- •24. Химическая коррозия. Защита металлов от коррозии
- •25.Электрохимическая коррозия. Защита металлов от коррозии.
- •26.Дисперсные системы и их классификация. Коллоидные растворы, строение мицеллы.
- •27. Кинетические и электрические свойства коллоидных растворов. Коагуляция.
- •28. Поверхностно-активные вещества
9.Термодинамика, ее основные понятия: внутренняя энергия, температура, теплота, работа. Закон сохранения энергии. Первое начало термодинамики.
Внутренняя энергия тела - это сумма кинетической энергии хаотического теплового движения частиц, составляющих тело, и потенциальной энергии их взаимодействия.
Внутренняя энергия тела не зависит от его движения и его положения относительно других тел.
Теплота Q есть форма передачи энергии от одного тела другому посредством соударения микрочастиц, составляющих тела является микрофизической характеристикой процесса передачи энергии. Если контакта между телами нет и нет никакого посредника для передачи кинетической энергии, следовательно нет соударений между микрочастицами тел и Q = 0.
Работа А – это форма обмена энергией системы с окружающей средой посредством направленного движения макросистемы как целого.
Например, газ в цилиндре под поршнем расширяется и совершает работу, поднимает груз на некоторую высоту. (рис. 35). Работа совершается за счет энергии нагревателя, передаваемой в форме теплоты. Газ совершает направленное движение, перемещая поршень с грузом, поэтому работа является макрофизической формой обмена энергией системы и окружающей среды.
Первое начало термодинамики. Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и на совершение работы над внешними телами:
Q = ΔU + A. |
В изохорном процессе газ работы не совершает, и ΔU = Q. В изобарном процессе A = pΔV = p (V2 – V1). В изотермическом процессе ΔU = 0, и A = Q; вся теплота, переданная телу, идет на работу над внешними телами. Графически работа равна площади под кривой процесса на плоскости p, V
10.Энергетические эффекты реакций. Термохимические расчеты. Закон Гесса.
Любая химическая реакция сопровождается выделением или поглощением энергии.
Химическая реакция как система получает энергию извне на разрыв химических связей исходных реагентов и выделяет энергию в окружающую среду при образовании новых химических связей в молекулах – продуктах реакции (табл. 3).
Представим энергетические изменения на примере горения водорода в кислороде
При образовании новых химических связей энергия выделяется. Это кинетическая энергия движения молекул – продуктов реакции. Часть внутренней энергии, которая была скрыта в химических связях молекул водорода и кислорода, превратилась в энергию поступательного и других видов движения молекул воды:
Термохимические расчеты
Различают экзо- и эндотермические реакции. Химические реакции, сопровождающиеся выделением или поглощением энергии в форме теплоты, называются соответственно экзотермическими и эндотермическими реакциями. Энтальпия реакции равна количеству энергии в форме теплоты, выделяющейся или поглощающейся в результате химического процесса при постоянных р = 1 атм и температуре Т.
Энтальпия образования сложного вещества есть энтальпия реакции синтеза его из простых веществ, взятых в наиболее устойчивых физических состояниях при заданном внешнем давлении р = 1 атм и температуре Т.
Под простыми веществами подразумеваются все химические элементы периодической системы в кристаллической форме, характерной для металлов (за исключением ртути), и молекулярной форме для неметаллов (за исключением благородных газов) в том агрегатном состоянии, которое для них характерно при внешнем давлении 1 атм.
Энтальпия образования всех простых веществ принята за начало отсчета и равна нулю.
Задачей термохимии является расчет энтальпий химических реакций по табличным значениям , опираясь на закон Гесса.
Основной закон термохимии (закон Гесса, 1836 г.) в современной интерпретации утверждает, что энтальпия реакций, протекающих либо при V,T = const, либо p,T = const не зависти от промежуточных стадий, а определяется лишь начальным и конечным состояниями системы. Закон Гесса: тепловой эффект реакции, протекающей при постоянном давлении и (или) объеме, зависит от природы и состояния исходных веществ и конечных продуктов, но не зависит от пути реакции
Следствие из закона Гесса: энтальпия химических реакций равна сумме энтальпий образования продуктов реакций за вычетом суммы энтальпий образования исходных веществ с учетом их стехиометрических коэффициентов.
Поскольку DH есть функция состояния системы, в которой происходят реакции, то в соответствии с законом Гесса независимо от того, идет реакция по первому или второму пути:
DH1 = DH2 + DH3 или
Именно столько энергии выделяется (экзотермический процесс) при образовании 1 моль СО из С(гр) и 1/2О2(г). Эта величина вычислена теоретически.
