- •1.Газообразное состояние вещества. Газовые законы. Химический состав атмосферного воздуха.
- •2.Жидкое состояние вещества. Уникальные свойства воды. Причины аномально высокой температуры плавления льда и кипения жидкой воды.
- •3.Твердые вещества в аморфном и кристаллическом состоянии. Типы кристаллических решеток.
- •4.Металлы, их физико-механические и электрические свойства
- •7.Типы и характеристики химической связи. Положения метода валентных связей.
- •8.Пространственная структура молекул. Гибридизация. Модели молекул метана, воды и аммиака.
- •9.Термодинамика, ее основные понятия: внутренняя энергия, температура, теплота, работа. Закон сохранения энергии. Первое начало термодинамики.
- •10.Энергетические эффекты реакций. Термохимические расчеты. Закон Гесса.
- •11.Второе начало термодинамики. Самопроизвольные процессы.
- •12.Обратимые и необратимые химические реакции. Химическое равновесие. Принцип Ле-Шателье.
- •13.Фазовые равновесия. Диаграммы состояния.
- •14.Скорость химических реакций. Молекулярность и порядок химической реакции. Закон действующих масс.
- •15.Влияние температуры на скорость химических реакций. Уравнение Вант-Гоффа. Энергия активации.
- •16.Механизмы химических реакций. Цепные реакции.
- •17.Катализатор и механизмы катализа. Энергетическая диаграмма каталитического процесса.
- •18.Общие свойства растворов. Закон Рауля. Осмотическое давление.
- •19.Электролиты. Степень диссоциации. Теория кислот и оснований.
- •20. Электролитическая диссоциация воды. Водородный показатель. Кислотно-основные индикаторы.
- •21. Реакции водных растворов электролитов: нейтрализации, осаждения, окислительно-восстановительные с участием металлов, гидролиза солей.
- •22.Окислительно-восстановительные процессы. Гальванический элемент. Уравнение Нернста.
- •23. Электролиз. Законы Фарадея. Электролиз расплавов и растворов на примере сульфата натрия.
- •24. Химическая коррозия. Защита металлов от коррозии
- •25.Электрохимическая коррозия. Защита металлов от коррозии.
- •26.Дисперсные системы и их классификация. Коллоидные растворы, строение мицеллы.
- •27. Кинетические и электрические свойства коллоидных растворов. Коагуляция.
- •28. Поверхностно-активные вещества
14.Скорость химических реакций. Молекулярность и порядок химической реакции. Закон действующих масс.
В интервале температур от 0оС до 100оС при повышении температуры на каждые 10 градусов скорость химической реакции возрастает в 2-4 раза.
Скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным в некоторые степени:
v = k[A]n[B]m, для реакции aA + bB = ...
Давление сильно влияет на скорость реакций с участием газов, потому что оно непосредственно определяет их концентрации.
В уравнении Менделеева-Клапейрона: pV = nRT
перенесем V в правую часть, , а RT - в левую и учтем, что n/V = c: p/RT = c
Давление и молярная концентрация газа связаны прямо пропорционально. Поэтому в закон действующих масс мы можем подставлять вместо концентрации p/RT.
Скорость химической реакции - это изменение молярной концентрации одного из участвующих в реакции веществ в единицу времени: v = Dc/Dt [моль/литр*сек]
Нюанс 1: Это выражение v = Dc/Dt позволяет определить лишь среднюю скорость реакции за выбранный отрезок времени. Ученых же, как правило, интересует скорость в выбранный момент времени, т.е. так называемая мгновенная скорость реакции. Она определяется как производная функции c(t):v = dc/dt
Если мы определяем скорость реакции по одному из реагентов, то знак производной c(t) отрицателен, т.к. концентрации реагентов убывают. Но по физическому смыслу скорость не может быть отрицательной величиной. Поэтому при использовании концентраций реагентов: v = -dc/dt
Нюанс 2: Определим скорость этой же реакции
H2 + I2 = 2HI не по уменьшению концентрации реагента, а по увеличению концентрации продукта:
v(HI) = dc(HI)/dt
У нас получилось, что v(H2) = v(I2), но не равно v(HI)! Ведь при уменьшении концентраций водорода и иода, например, в 3 раза концентрация иодоводорода возрастает в 9 раз (это видно по коэффициентам в уравнении реакции). Чтобы скорости стали равными (и можно было говорить о единой скорости реакции), изменение концентрации HI в единицу времени следует поделить на стехиометрический коэффициент при Hi. Число молекул, вступающих в реакцию, определяют молекулярность реакции. Так, если в реакцию вступает одна молекула, то такая реакция называется молекулярной реакцией. Если в реакции участвуют две молекулы (безразлично, одинаковые или нет), то такая реакция называется бимолекулярной. Встречаются также тримолекулярные реакции.Реакции более высокой степени молекулярности крайне редки из–за малой вероятности одновременного столкновения большого числа молекул.Поэтому большинство реакций протекают в несколько элементарных, простых стадий, в которых участвует небольшое число молекул.
Так, например, рассмотренная выше реакция протекает по следующему механизму:
первая стадия
вторая стадия (медленная)
третья стадия
Определить такие стадии – значит определить механизм, или путь реакции.
Скорость всей реакции определяется скоростью её наиболее медленной стадии, которая и определяет механизм.Поэтому закон действующих масс справедлив только для таких элементарных стадий.
Молекулярность реакции легко определить в случае простых реакций, протекающих в одну стадию. В большинстве же случаев довольно трудно найти молекулярность реакции. Сумма показателей степеней, в которых концентрация всех исходных веществ входит уравнение скорости реакции, равна порядку реакции в целом. Порядок химической реакции по веществу совпадает со стехиометрическим коэффициентом реакции лишь в очень простых реакциях, например в реакции синтеза йодистого водорода:
В общем случае, для реакции
aA +bB + cC = dD + eE + fF + …
кинетическое уравнение для скорости реакции записывается следующим образом:
v = k[A]a[B]b[C]c (3)
Оно представляет собой произведение концентраций реагентов, каждая из которых взята в степени, равной числу молей соответствующего вещества в полном уравнении реакции. Это не что иное, как математическая запись ЗАКОНА ДЕЙСТВИЯ МАСС.
Часто встречается и термин ЗАКОН ДЕЙСТВУЮЩИХ МАСС, причем можно использовать любое из этих названий. Закон действующих масс и его математическое выражение - кинетическое уравнение - называют основным законом химической кинетики. Этот закон можно сформулировать так:
При постоянной температуре скорость химической реакции прямо пропорциональна произведению молярных концентраций реагентов.
