- •Практические Задачи по Архитектуре эвм и вс
- •Вопросы по Архитектуре эвм и вс
- •Поколения эвм. Основные характеристики отечественных эвм каждого поколения
- •Логические операции и базовые элементы компьютера.
- •Арифметико-логическое устройство
- •Шина eisa (extended industry standard architecture)
- •Локальные шины
- •Локальная шина vesa (vl-bus)
- •Шина pci (peripheral component interconnect bus)
- •Интерфейс pcmcia
- •Контроллер hypertransport
- •Интерфейс ide
- •Интерфейс scsi
- •Характеристики scsi
- •Основными характеристиками центральных процессоров являются:
- •4.3 Внутренние устройства системного блока
- •4.4 Системы, расположенные на материнской плате
- •4.5 Периферийные устройства пк
- •Матричные принтеры
- •Лазерные принтеры
- •4.6 Шины – интерфейсы пк
- •4.6.1 Системные (машинные или ввода-вывода или внутренние) интерфейсы
- •4.6.2 Внешние интерфейсы (интерфейсы периферийных устройств)
- •Классификация информации
- •Сжатие информации.
- •Классификация эвм по принципу действия
- •Классификация эвм по этапам создания
- •Классификация эвм по назначению
- •Классификация эвм по размерам и функциональным возможностям
- •1.4. Аппаратные средства мультимедиа технологии
- •1.4.1. Аппаратные средства
- •1.5. Программные средства мультимедиа технологии
- •1.5.1. Системные программные средства
- •1.5.2. Инструментальные программные средства
- •1.5.3. Прикладные программные средства
- •Глава 2.Режимы работы сетей передачи сообщений.
- •2.1.Сети с коммутацией каналов
- •2.2.Сети с выделенными каналами.
- •2.3.Сети с коммутацией пакетов.
- •Интерфейсы IrDa
- •Bios материнской платы
- •Чипсеты для современных x86-процессоров
- •Чипсеты arm
- •Фреоновые установки[]
- •Приёмы моддинга]
- •Перспективы развития вычислительной техники
- •7.1. Основные этапы развития вычислительной техники.
- •Устройство жесткого диска. Архитектура контроллеров ide и SerialAta. Основные характеристики и отличия. Адресация данных. Твердотельные накопители.
- •Разница между ide и sata
- •Отличие ide от sata заключается в следующем:
- •2.4. Способы адресации информации в эвм
- •Классификация способов адресации по наличию адресной информации в команде Явная и неявная адресация
- •Классификация способов адресации по кратности обращения в память
- •Непосредственная адресация операнда
- •Прямая адресация операндов
- •Косвенная адресация операндов
- •Классификация способов формирования исполнительных адресов ячеек памяти
- •Относительная адресация ячейки оп Базирование способом суммирования
- •Относительная адресация с совмещением составляющих аи
- •Индексная адресация
- •Стековая адресация
- •1) Методы обнаружения ошибок
- •2) Методы коррекции ошибок
- •3) Методы автоматического запроса повторной передачи
- •17.Шина usb. Общая архитектура
- •18.Шина usb. Свойства устройств
- •19.Шина usb. Принципы передачи данных
- •20.Шина usb.Логические уровни обмена данными
- •Профиль последовательного порта (spp)
- •Принтеры: матричные, струйные, лазерные, твердочернильные и термосублимационные.
- •Уровни модели osi
- •Сетевые стандарты
- •Модель iso/osi и протоколы передачи данных
- •Виды инструментального по]
- •Виды операционных систем
- •Преобразование чисел из одной системы счисления в другую Перевод целого числа из десятичной системы в другую позиционную систему счисления
- •В двоичную:
- •В восьмеричную:
- •В шестнадцатеричную:
- •Перевод правильной десятичной дроби в любую другую позиционную систему счисления
- •Перевод числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную.
- •Перевод из двоичной системы счисления в шестнадцатеричную и обратно.
- •Перевод из двоичной системы счисления в восьмеричную и обратно.
Стековая адресация
Стековая память (стек) является эффективным элементом современных ЭВМ, реализует неявное задание адреса операнда. Хотя адрес обращения в стек отсутствует в команде, он формируется схемой управления автоматически по специальному правилу.
Твердотéльный накопи́тель (англ. solid-state drive, SSD) — компьютерное немеханическое запоминающее устройство на основе микросхем памяти. Кроме них, SSD содержит управляющий контроллер. Наиболее распространенный вид твердотельных накопителей использует для хранения информации флеш-памяти типа NAND, однако существуют варианты, в которых накопитель создается на базе DRAM-памяти, снабженной дополнительным источником питания — аккумулятором[1].
По сравнению с традиционными жёсткими дисками (HDD), твердотельные накопители имеют меньший размер и вес, но в несколько раз (6—7) большую стоимость за гигабайт и значительно меньшую износостойкость (ресурс записи).
Небольшие твердотельные накопители могут встраиваться в один корпус с магнитными жёсткими дисками, образуя гибридные жёсткие диски (англ. SSHD, solid-state hybrid drive)[2][3][4]. Флеш-память в них может использоваться либо в качестве буфера (кэша) небольшого объёма (4—8 ГБ), либо, реже, быть доступной как отдельный накопитель (англ. dual-drive hybrid systems). Подобное объединение позволяет воспользоваться частью преимуществ флеш-памяти (быстрый произвольный доступ) при сохранении небольшой стоимости хранения больших объёмов данных.
В начале 2010-х годов на рынке были представлены SSD-накопители с объёмами 64, 80, 120, 256, 512 гигабайт, отдельные модели имеют ёмкость 0,7, 0,8, 1, 1,6 терабайт или более. Основными интерфейсами подключения стали SATA III (до 600 МБ/с
Архитектура и функционирование[]
NAND SSD
Накопители, построенные на использовании энергонезависимой памяти (NAND SSD), появились, во второй половине 90 годов прошлого века,. До середины 2000-х годов уступали традиционным накопителям — жёстким дискам — в скорости записи, но компенсировали это высокой скоростью доступа к произвольным блокам информации С 2012 года уже выпускаются твердотельные накопители со скоростью чтения и записи, во много раз превосходящие возможности жёстких дисков[8]. Характеризуются относительно небольшими размерами и низким энергопотреблением.
RAM SSD]
Эти накопители построены на использовании энергозависимой памяти (такой же, какая используется в ОЗУ персонального компьютера) наподобие RAM drive, и характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость за единицу объёма. Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели — системами резервного и/или оперативного копирования.
Преимущества]
Отсутствие движущихся частей, отсюда:
Практически полное отсутствие шума;
Высокая механическая стойкость);
Стабильность времени считывания файлов вне зависимости от их расположения или фрагментации
Скорость чтения/записи выше, чем у распространенных жёстких дисков, и, в ряде операций, может быть близка к пропускной способности интерфейсов (SAS/SATA II 300 МБайт/с, SAS/SATA III 600 МБайт/с
Количество произвольных операций ввода-вывода в секунду (IOPS) у SSD на порядок (на несколько порядков в случае записи) выше, (нет необходимости ожидать оборота диска перед доступом).
Низкое энергопотребление
Намного меньшая чувствительность к внешним электромагнитным полям;
Малые габариты и вес. Для твердотельных накопителей были разработаны более компактные форм-факторы, например, mSATA, NGFF (M.2).
Недостатки[]
Главный недостаток NAND SSD — ограниченное количество циклов перезаписи флеш-память позволяет записывать данные примерно 3000—10000 раз (гарантированный ресурс Для борьбы с неравномерным износом в высокопроизводительных (SATA и PCIe) SSD применяются схемы балансирования нагрузки: контроллер хранит информацию о том, сколько раз какие блоки перезаписывались, и при необходимости производит запись в менее изношенные блоки.[10]
Цена гигабайта SSD-накопителей, несмотря на продолжающееся на протяжении многих лет быстрое снижение, все еще в несколько раз выше цены гигабайта HDD
Модели накопителей минимального объема обычно имеют немного более низкую производительность в ряде операций за счет меньшего параллелизма.[19]
Производительность накопителя зачастую может временно снижаться при записи больших объемов данных
Применение в SSD-накопителях аппаратной команды TRIM для пометки удаленной информации может сильно осложнить или сделать невозможным восстановление удалённой информации соответствующими утилитами.
Возможен выход из строя электронных устройств, в том числе контроллера или отдельных чипов NAND-памяти либо пассивных компонентов.
Высокая сложность или невозможность восстановления информации после электрических повреждений.
Низкая реальная помехозащищенность операций чтения из ячеек памяти и наличие сбойных ячеек, особенно при изготовлении по самым современным («тонким») техпроцессам, приводит к необходимости использования в контроллерах современных моделей все более сложных внутренних кодов исправления ошибок
Коды коррекции и восстановления информации.
Существует три наиболее распространенных орудия борьбы с ошибками в процессе передачи данных:
коды обнаружения ошибок;
коды с коррекцией ошибок, называемые также схемами прямой коррекции ошибок (Forward Error Correction - FEC);
протоколы с автоматическим запросом повторной передачи (Automatic Repeat Request - ARQ).
Код обнаружения ошибок позволяет довольно легко установить наличие ошибки. Как правило, подобные коды используются совместно с определенными протоколами канального или транспортного уровней, имеющими схему ARQ. В схеме ARQ приемник попросту отклоняет блок данных, в котором была обнаружена ошибка, после чего передатчик передает этот блок повторно. Коды с прямой коррекцией ошибок позволяют не только обнаружить ошибки, но и исправить их, не прибегая к повторной передаче. Схемы FEC часто используются в беспроводной передаче, где повторная передача крайне неэффективна, а уровень ошибок довольно высок.
