Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзаменационные вопросы с ответами.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
12.79 Mб
Скачать

Стековая адресация

Стековая память (стек) является эффективным элементом современных ЭВМ, реализует неявное задание адреса операнда. Хотя адрес обращения в стек отсутствует в команде, он формируется схемой управления автоматически по специальному правилу.

Твердотéльный накопи́тель (англ. solid-state drive, SSD) — компьютерное немеханическое запоминающее устройство на основе микросхем памяти. Кроме них, SSD содержит управляющий контроллер. Наиболее распространенный вид твердотельных накопителей использует для хранения информации флеш-памяти типа NAND, однако существуют варианты, в которых накопитель создается на базе DRAM-памяти, снабженной дополнительным источником питания — аккумулятором[1].

По сравнению с традиционными жёсткими дисками (HDD), твердотельные накопители имеют меньший размер и вес, но в несколько раз (6—7) большую стоимость за гигабайт и значительно меньшую износостойкость (ресурс записи).

Небольшие твердотельные накопители могут встраиваться в один корпус с магнитными жёсткими дисками, образуя гибридные жёсткие диски (англ. SSHD, solid-state hybrid drive)[2][3][4]. Флеш-память в них может использоваться либо в качестве буфера (кэша) небольшого объёма (4—8 ГБ), либо, реже, быть доступной как отдельный накопитель (англ. dual-drive hybrid systems). Подобное объединение позволяет воспользоваться частью преимуществ флеш-памяти (быстрый произвольный доступ) при сохранении небольшой стоимости хранения больших объёмов данных.

В начале 2010-х годов на рынке были представлены SSD-накопители с объёмами 64, 80, 120, 256, 512 гигабайт, отдельные модели имеют ёмкость 0,7, 0,8, 1, 1,6 терабайт или более. Основными интерфейсами подключения стали SATA III (до 600 МБ/с

Архитектура и функционирование[]

NAND SSD

Накопители, построенные на использовании энергонезависимой памяти (NAND SSD), появились, во второй половине 90 годов прошлого века,. До середины 2000-х годов уступали традиционным накопителям — жёстким дискам — в скорости записи, но компенсировали это высокой скоростью доступа к произвольным блокам информации С 2012 года уже выпускаются твердотельные накопители со скоростью чтения и записи, во много раз превосходящие возможности жёстких дисков[8]. Характеризуются относительно небольшими размерами и низким энергопотреблением.

RAM SSD]

Эти накопители построены на использовании энергозависимой памяти (такой же, какая используется в ОЗУ персонального компьютера) наподобие RAM drive, и характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость за единицу объёма. Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели — системами резервного и/или оперативного копирования.

Преимущества]

  • Отсутствие движущихся частей, отсюда:

    • Практически полное отсутствие шума;

    • Высокая механическая стойкость);

  • Стабильность времени считывания файлов вне зависимости от их расположения или фрагментации

  • Скорость чтения/записи выше, чем у распространенных жёстких дисков, и, в ряде операций, может быть близка к пропускной способности интерфейсов (SAS/SATA II 300 МБайт/с, SAS/SATA III 600 МБайт/с

  • Количество произвольных операций ввода-вывода в секунду (IOPS) у SSD на порядок (на несколько порядков в случае записи) выше, (нет необходимости ожидать оборота диска перед доступом).

  • Низкое энергопотребление

  • Намного меньшая чувствительность к внешним электромагнитным полям;

  • Малые габариты и вес. Для твердотельных накопителей были разработаны более компактные форм-факторы, например, mSATANGFF (M.2).

Недостатки[]

  • Главный недостаток NAND SSD — ограниченное количество циклов перезаписи флеш-память позволяет записывать данные примерно 3000—10000 раз (гарантированный ресурс Для борьбы с неравномерным износом в высокопроизводительных (SATA и PCIe) SSD применяются схемы балансирования нагрузки: контроллер хранит информацию о том, сколько раз какие блоки перезаписывались, и при необходимости производит запись в менее изношенные блоки.[10] 

  • Цена гигабайта SSD-накопителей, несмотря на продолжающееся на протяжении многих лет быстрое снижение, все еще в несколько раз выше цены гигабайта HDD

  • Модели накопителей минимального объема обычно имеют немного более низкую производительность в ряде операций за счет меньшего параллелизма.[19]

  • Производительность накопителя зачастую может временно снижаться при записи больших объемов данных

  • Применение в SSD-накопителях аппаратной команды TRIM для пометки удаленной информации может сильно осложнить или сделать невозможным восстановление удалённой информации соответствующими утилитами.

  • Возможен выход из строя электронных устройств, в том числе контроллера или отдельных чипов NAND-памяти либо пассивных компонентов.

  • Высокая сложность или невозможность восстановления информации после электрических повреждений.

  • Низкая реальная помехозащищенность операций чтения из ячеек памяти и наличие сбойных ячеек, особенно при изготовлении по самым современным («тонким») техпроцессам, приводит к необходимости использования в контроллерах современных моделей все более сложных внутренних кодов исправления ошибок

  1. Коды коррекции и восстановления информации.

Существует три наиболее распространенных орудия борьбы с ошибками в процессе передачи данных:

  • коды обнаружения ошибок;

  • коды с коррекцией ошибок, называемые также схемами прямой коррекции ошибок (Forward Error Correction - FEC);

  • протоколы с автоматическим запросом повторной передачи (Automatic Repeat Request - ARQ).

Код обнаружения ошибок позволяет довольно легко установить наличие ошибки. Как правило, подобные коды используются совместно с определенными протоколами канального или транспортного уровней, имеющими схему ARQ. В схеме ARQ приемник попросту отклоняет блок данных, в котором была обнаружена ошибка, после чего передатчик передает этот блок повторно. Коды с прямой коррекцией ошибок позволяют не только обнаружить ошибки, но и исправить их, не прибегая к повторной передаче. Схемы FEC часто используются в беспроводной передаче, где повторная передача крайне неэффективна, а уровень ошибок довольно высок.