- •1. Иммунология как наука. Задачи иммунологии. История развития иммунологии.
- •2. Уровни организации защитных сил организма
- •3.Понятие «иммунитет».
- •5. Онтогенез иммунной системы. Критические периоды в развитии иммунной системы.
- •8. Классификация молекул иммунной системы. Молекулы, определяющие врожденный и приобретенный иммунитет.
- •7. Клеточные механизмы врожденного иммунитета: фагоцитоз. Отличия фагоцитоза, осуществляемого нейтрофилами и макрофагами. Этапы фагоцитоза. Исходы фагоцитоза.
- •10. Молек. Адгезии, определение, классификации, номенклатура. Процессы, в которых участвуют молекулы адгезии. Механизмы диапедеза иммунокомпетентных клеток через сосудистый эндотелий.
- •11. Цитокины
- •13. Основные свойства антигенов: чужеродность, специфичность, иммуноген-ность, - и факторы их определяющие.
- •14. Антигенпрезентирующие клетки
- •15.Главный комплекс гистосовместимости (гкгс)
- •Строение молекул главного комплекса гистосовместимости (гкгс, mhc) I и II класса.
- •18.Морфо-функциональная характеристика лимфоцитов. Лимфопоэз и иммуногенез лимфоцитов. Клетки-памяти. Понятие «хоуминг» лимфоцитов. Рециркуляция и миграция лимфоцитов в лимфоидные органы.
- •20.Созревание и дифференцировка т-лимфоцитов. Положительная и отрицательная селекция т-лимфоцитов в тимусе.
- •21.Субпопуляции т-лимфоцитов, основные функции. Т-хелперы, классификация, механизмы дифференцировки. Роль в развитии иммунного ответа Тх1, Тх2, Тх17 и регуляторных т-лимфоцитов.
- •22.Клеточный иммунный ответ. Этапы. Процессинг и презентация антигена. Основные клетки и молекулы.
- •Эффекторные механизмы клеточно-медиированного иммунного ответа. Эффекторные функции т хелперов. Т-клеточный цитолиз. Направленность и механизмы реализации цитотоксических реакций.
- •25.Варианты клеточного иммунного ответа: реакция гиперчувствительности замедленного типа (гзт). Исходы реакции гзт.
- •26. Понятие об антителах (иммуноглобулинах).
- •Механизмы взаимодействия антиген-антитело. Функции антител.
- •28.Классы иммуноглобулинов. Функции иммуноглобулинов в зависимости от принадлежности к классу.
- •Обеспечение вариабельности антител. Генетическое детерминирование молекул иммуноглобулинов. Реаранжировка генов иммуноглобулинов
- •44.Иммунный статус. Уровни оценки, тесты.
- •2.Иммунопатология 2-го типа. Механизмы цитолиза. Иммунные гемолитические анемии.
- •48.Аллергены,классификация по путям попадания в организм,по хим. Структуре, по происхождению. Псевдоаллергическая реакция,псевдоаллергены.
- •49.Стадии и фазы аллергии.
- •50 Роль тучных клеток и базофилов в стадии разрешения аллергии. Дегрануляция тучных клеток и цикл арахидоновой кислоты: биологически активные компоненты, имеющие патофизиологическое значение.
- •51.Аллергические повреждения тканей.
- •52.Клинические формы аллергических процессов.М-ды лаб. Диагностики и терапии аллергических заболеваний(аз).
- •53. Методы лабораторной диагностики и терапии аллергических заболеваний.
- •54.Иммунологическая толерантность и механизмы ее формирования. Основы формирования аутотолерантности. Центральная и периферическая толерантность.
- •55. Аутоиммунные болезни и аутоиммунитет. Характеристика аутоантигенов и аутоантител. Классификация аутоиммунных заболеваний.
- •56. Специфическая терапия и методы лабораторной диагностики аутоиммунных заболеваний. При диагностике аутоиммунных заболеваний используются следующие группы тестов:
- •57. Основные концепции этиологии и патогенеза аутоиммунных заболеваний. Роль генетических факторов, инфекции и дисфункций иммунной системы в патогенезе аутоиммунных заболеваний.
- •58.Основные механизмы повреждения тканей при аутоиммунных заболеваниях. Иммунопатология 2-го, 3-го и 4-го типов. Механизмы цитолиза. Нозологические формы.
- •59.Болезни, обусловленные иммунными комплексами (3-й тип иммунопатологических реакций). Характеристика иммунных комплексов. Воспалительные реакции иммунных комплексов.
- •60.Системная красная волчанка. Этиология и патогенез. Характеристика аутоантител. Диагностика.
- •61. Аутоиммунные эндокринопатии. Аутоиммунные заболевания щитовидной железы. Характеристика аутоантигенов. Иммунологические механизмы патогенеза.
- •62. Сахарный диабет 1-го типа. Характеристика аутоантигенов и аутоантител. Этиологические факторы и иммунные механизмы патогенеза. Методы специфической диагностики.
- •63. Этиопатогенетические механизмы развития лимфопролиферативных заболеваний - лпз. Роль нарушения регуляции проонкогенов. Хромосомные транслокации, сопровождающие лпз.
- •64. Торможение стадий дифференцировки лимфоидных клеток при лпз. Классификация лпз на основе фенотипирования лимфоидных клеток.
- •66. Множественная миелома. Сущность изменений иммунной системы. Моноклональные иммуноглобулины. Болезнь легких цепей.
- •67. Лимфомы. Лимфогрануломатоз. Основные клинико-иммунологические проявления.
- •68. Методы изучения противоопухолевого иммунитета. Диагностика лимфопролиферативных заболеваний.
- •69. Первичные (врожденные) иммунодефициты (пид). Классификация. Клинические проявления и ассоциативные синдромы.
- •70. Молекулярно-генетические дефекты при первичных иммунодефицитах. Врожденные иммунодефициты с установленными генными мутациями.
- •71. Первичные иммунодефициты. Дефекты созревания и дифференцировки т- и в-лимфоцитов.
- •Методы лабораторной диагностики первичных иммунодефицитов (т- , в- клеточного звена иммунитета, фагоцитоза). Панель скрининговых тестов.
- •74.Иммунопатогенез вид инфекц. Этиологии.
- •75.Спид
- •76. Клетки-мишени при вич-инфекции. Иммунологические нарушения при вич инфекции. Клинико-лабораторная диагностика вич-инфекции.
- •77. Синдром хронической усталости
- •79. Структурные изменения лимфоидной системы при старении. Основные положения иммунологической теории старения.
- •80. Типы трансплантатов (сингенный, алло-, ксено-, аутотрансплантант). Механизмы отторжения, возникающие при первичной и повторной пересадке аллотрансплантата.
- •81.Генетический контроль трансплантационных антигенов и последствия мнс-совместимости
- •83 . Взаимодействия в системе «мать-плод» как пример успешной природной трансплантации. Факторы обеспечивающие отсутствие иммунного конфликта при нормально протекающей беременности.
- •Профилактика
- •85.Иммунные факторы защиты
- •86. Иммунообусловленная патология при инфекционном процессе. Прямые и непрямые механизмы повреждения тканей при инфекции.
- •89. Определение и классификация иммунотропных факторов среды.
- •90. Радиационное повреждение иммунной системы: механизмы интерфазной и репродуктивной гибели лимфоцитов.
- •91. Радиочувствительность иммунокомпетентных клеток. Пути восстановления иммунной системы после радиационного поражения
- •95. Методы оценки количества и функциональной активности лимфоцитов.
- •96. Методы исследования функциональной активности фагоцитов.
- •97.Методы исследования системы комплемента.
- •98. Методы количественной оценки иммуноглобулинов.
- •99. Понятие «иммунокоррекция». Меры иммунокоррекции. Классификация иммунокоррекции в зависимости от направленности.
80. Типы трансплантатов (сингенный, алло-, ксено-, аутотрансплантант). Механизмы отторжения, возникающие при первичной и повторной пересадке аллотрансплантата.
. -Аутотрансплантация — пересадка ткани в пределах одного организма — почти всегда проходит успешно. Свойство аутотрансплантатов легко приживаться. применяют при лечении ожогов — на поражённые участки тела проводят пересадку собственной кожи. -сингенные трансплантаты — пересадка между генетически идентичными особями. -Аллогенные трансплантаты (аллотрансплантаты; ткани, пересаженные от одной особи другой генетически чужеродной особи того же вида) -ксеногенные трансплантаты (ксенотрансплантаты; ткани, пересаженные от особи другого вида) обычно подвергаются отторжению. При первичной пересадке аллотрансплантата в первые два дня устанавливается общее кровообращение между трансплантатом и реципиентом, края пересаженной кожи срастаются с кожей хозяина. Внешне в течение 4-5 дней трансплантат кажется прижившимся. Однако именно в этот внешне благополучный период формируются эффекторные механизмы отторжения. И к 6-7 дню наблюдается отечность трансплантата, прекращается его кровоснабжение, развиваются геморрагии. В зоне локализации трансплантата скапливаются клетки воспалительной реакции , среди которых доминируют лимфоциты . Начинается процесс деструкции трансплантата. К 10-11 дню трансплантат погибает, и его пересадка на исходного донора не приводит к восстановлению жизнеспособности. При повторной пересадке трансплантата от того же донора реакция отторжения развивается приблизительно в два раза быстрее - за 6-8 дней. Первоначальная незначительная васкуляризация трансплантата быстро сменяется тромбозом сосудов и клеточным некрозом. Иногда наблюдается особо острая форма вторичного отторжения по типу " белого трансплантата ". При этой форме вторичного отторжения не происходит васкуляризации трансплантата. Процесс отмирания ткани начинается сразу после пересадки. Трансплантат остается тонким и депигментированным. Реакция вторичного отторжения специфична и не наблюдается при пересадке трансплантата от постороннего донора на исходного реципиента. В этом случае аллотрансплантат отторгается по варианту первичной пересадки
81.Генетический контроль трансплантационных антигенов и последствия мнс-совместимости
Специфичность антигенов, участвующих в отторжении трансплантата, находится под генетическим контролем. Генетически идентичные мыши одной инбредной линии или однояйцовые близнецы имеют одинаковые трансплантационные антигены, и между ними легко осуществляется пересадка тканей. Как показали эксперименты по скрещиванию мышей различных инбредных линий, гены, контролирующие трансплантационные антигены, наследуются по Менделю. Поскольку у мышей внутрилинейные трансплантаты приживляются без отторжения, инбредные мыши, очевидно, гомозиготны по «трансплантационным» генам. Рассмотрим две такие линии А и В с аллельными генами в одном локусе. У обеих линий гены этого локуса на отцовской и материнской хромосоме, разумеется, идентичны, т.е. генотип мышей можно записать как А/А и В/В соответственно. Скрещивание линий А и В дает первое поколение генотипа А}В. Мышам можно пересаживать трансплантаты от обоих родителей, т. е. они толерантны и к А, и к В. При скрещивании между собой мышей Fx следует ожидать в F2 распределения генотипов, представленного на рис. 13.3: в среднем 1 из 4 потомков, не унаследовав гена А, будет отторгать трансплантат А из-за отсутствия толерантности, и аналогично 1 из 4 потомков будет отторгать трансплантат В. Таким образом, по каждому локусу 3 из 4 мышей поколения F2 должны воспринимать трансплантат от родительской линии. Если вместо одного локуса с различающимися аллельными генами имеется п локусов, то доля мышей поколения F2, воспринимающих трансплантат родительской линии, составляет (3/4)". Исходя из этого, можно определить число локусов, контролирующих трансплантационные антигены.
У мышей идентифицировано около 40 таких локусов, но, как мы уже упоминали в первых главах, доминирует один сложный локус, названный Н-2. Он контролирует «сильные» трансплантационные антигены, вызывающие интенсивную реакцию отторжения. В предыдущих главах мы уже довольно детально обсуждали структуру (см. рис. 3.16) и биологию этого главного комплекса гистосовместимости (МНС). «Минорные» трансплантационные антигены, не относящиеся к Н-2, например антиген самцов H-Y, на клеточной поверхности распознаются в ассоциации (слабой?) с молекулами МНС Т-клетками, но не так легко В-клетками. Существует предположение, что такие молекулы, как рецептор для инсулина, взаимодействуя с продуктами МНС и обладая полиморфизмом, могли бы функционировать в качестве минорных трансплантационных антигенов. Термин «минорный» не должен вводить в заблуждение. Не следует думать, что эти антигены не приводят к реакции отторжения - просто она протекает медленнее, чем в ответ на различия по МНС.Идеальная пара для пересадки — это изогенные донор и реципиент, например однояйцевые близнецы. Однако возможность подобрать такую пару встречается редко, и в большинстве случаев существуют различия между донором и реципиентом по МНС и/или минорным локусам гистосовместимости. На практике достаточно подобрать пару, совместимую по главным антигенам (МНС, у человека HLA). Проверить совместимость можно при помощи серологического типирования, постановка которого требует всего лишь нескольких часов и поэтому может быть осуществлена в течение срока хранения донорского органа во льду. Недавно был разработан новый, чувствительный и точный метод типирования с использованием полимераз- ной цепной реакции позволяющий идентифицировать гены HLA донора и реципиента.
Обеспечить совместимость по всем известным антигенам HLA практически невозможно, однако хорошие результаты удается получить в тех случа ях, когда донор и реципиент имеют одни и те же МНС-антигены класса II, особенно если это антигены HLA-DR — они непосредственно активируют Тх-клетки реципиента.
Число известных к настоящему времени HLA- антигенов класса I (HLA-A, HLA-B и HLA-C) и класса II (HLA-DP, HLA-DQ и HLA-DR) достаточно велико, так что полная совместимость двух выбранных случайным образом индивидов крайне маловероятна.
Для определения реактивности лимфоцитов реципиента в отношении антигенов, экспрессируемых клетками донора, можно использовать также реакцию смешанной культуры лимфоцитов (CKJI). Слабая реакция в смеси клеток донора и реципиента ассоциируется с отличной выживаемостью трансплантата. Однако постановка реакции CKJI занимает 4—5 сут, что служит серьезным препятствием для ее использования в клинике — органы, полученные от трупа или больного, смерть которого зарегистрирована по прекращению функционирования головного мозга, не могут сохраняться более 24—48 ч. Тест CKJ1 можно применять в тех случаях, когда орган взят от живого донора (например, родственника). Результаты этой реакции особенно важны при трансплантации костного мозга, так как они позволяют установить, способны ли клетки костного мозга донора реагировать на антигены реципиента и вызывать РТПХ
82. Иммунологические механизмы отторжения трансплантата. В отторжении трансплантата играют роль и медиаторы клеточного иммунитета - цитокины ( ИЛ-1 , ИЛ-2 , ИЛ-3 , ИЛ-4 , ИЛ-6 , ИЛ-10 , ИЛ-12 и интерферон гамма ). К примеру, выработка интерферона гамма Т-лимфоцитами усиливает экспрессию антигенов HLA на клетках эндотелия. В норме этот механизм способствует представлению чужеродного антигена, но при трансплантации он усиливает иммуногенность сосудов трансплантата. Кроме того, ИЛ-2 (главный фактор роста Т-лимфоцитов , стимулирующий пролиферацию цитотоксических Т-лимфоцитов) вырабатывается основным типом Т-хелперов - Th1, а тип Th2 вырабатывает факторы роста В-лимфоцитов (например, ИЛ-4 ). Реакция отторжения включает два компонента: -Специфический, связанный с активностью цитотоксических Т-клеток. -Неспецифический,имеющий характер восполения.
Клинические проблемы трансплантации . Успех трансплантации зависит от многих факторов и, в первую очередь, от уровня идентичности по молекулам (антигенам) MHC между донором трансплантата и больным реципиентом. Подбор пар для пересадки труден, т.к. слишком высока антигенная индивидуальность среди людей. Даже максимально возможное сходство по МНС между донором и реципиентом не исключает значительных различий по минорным антигенам гистосовместимости . Вторым осложняющим моментом при трансплантации является возможное присутствие у пациента антител к антигенам донора трансплантата. Это обстоятельство определяет необходимость предварительного тестирования реципиента на наличие у него антител к антигенам трансплантируемого органа. Несмотря на эти ограничения пересадка органов с достаточно высоким процентом успешных операций стала обычной, хотя и трудной лечебной процедурой. Проведение успешной работы по трансплантации органов требует соблюдения ряда условий. 1) Наличие разветвленной сети центров по трансплантологии, задача которых - сбор информации о потенциальных донорах и состоянии здоровья пациентов, ожидающих хирургического вмешательства; проведение HLA- типирования как донора, так и пациента; организация максимально быстрой доставки органа в клинику. 2) Организация специализированных клиник по трансплантации со штатом квалифицированных хирургов. 3) Постопреационный контроль состояния хирургического больного. использование иммуносупрессивной терапии. Наиболее эффективными в данном случае являются стероиды, циклоспорин А и FR-506 и азатиоприн.
