- •Геометрические и кинематические параметры процессов резания. Терминология, основные понятия и определения.
- •Конструктивные параметры режущей части инструмента. Углы резания
- •Деформационные процессы в зоне резания
- •Контактные и тепловые явления при механической обработке материалов
- •4.1 Наростообразование
- •4.2 Виды износа режущего инструмента
- •4.3 Механизм изнашивания режущего инструмента.
- •5 Физические и технологические составляющие усилий резания.
- •5.1 Работа резания и ее составляющие
- •5.2 Физические составляющие сил резания
- •5.3 Технологические составляющие усилий резания
- •6 Классификация инструментальных материалов. Составы, свойства, области применения
- •6.1 Сравнительная характеристика инструментальных материалов
- •6.2 Твердые сплавы. Взаимосвязь структуры и свойств
- •6.3 Классификация твердых сплавов
- •6.3.1 Карбидовольфрамовые твердые сплавы.
- •6.3.2 Титановольфрамовые твердые сплавы
- •6.3.3 Титанотанталовольфрамовые твердые сплавы
- •6.3.4 Безвольфрамовые твердые сплавы
- •6.4 Классификация твердых сплавов по областям применения при обработке резанием
- •6.5 Твердосплавной инструмент с износостойкими покрытиями
- •6.5.1 Химические методы осаждения покрытий. Свойства, области применения
- •6.5.2 Методы физического осаждения износостойких покрытий. Свойства, области применения
- •6.6 Режущая керамика. Составы, свойства, применение
- •6.7 Сверхтвердые материалы. Композиты. Классификация, области применения.
- •6.7.1 Сверхтвердые инструментальные материалы (стм)
- •7 Принципы построения технологических процессов при обработке материалов резанием.
- •7.1. Понятие о припуске.
- •7.2. Некоторые сведения по технологии машиностроения
- •Виды расчета режимов резания
- •Процессы и операции формообразования точением
- •9.1 Виды токарной обработки
- •9.2 Параметры резания при точении
- •9.3 Инструмент для токарной обработки
- •9.3.1 Державки. Конструкции и классификация
- •9.3.2 Конструкции и классификация сменных многогранных пластин
- •9.4 Рекомендации по выбору геометрии режущей части сменных многогранных пластин
- •9.5 Методика расчета режимов резания при точении
- •1. Назначение глубины резания t
- •3. Расчет скорости резания V
- •10 Процессы и операции фрезерования
- •10.1 Виды фрезерования
- •10.2 Инструмент для фрезерования
- •10.3 Конструктивное исполнение сборных фрез, оснащенных сменными многогранными пластинами
- •10.4 Физические и геометрические параметры на различных операциях фрезерования
- •10.5 Расчёт основного машинного времени при фрезеровании
- •10.6 Процессы фрезерования с круговой интерполяцией
- •11 Процессы формообразования отверстий. Классификация сверлильных операций
- •11.1 Особенности процесса резания (формообразования) при сверлении.
- •11.2 Силы, вращающий момент, потребление мощности при сверлении
- •11.3 Особенности заточки и эксплуатации спиральных свёрл
- •11.4 Зенкерование и зенкование.
- •11.4.1 Геометрические параметры резания при зенкеровании и зенковании
- •11.4.2 Силы, вращающий момент, потребляемая мощность при зенкеровании и зенковании
- •Развёртывание.
- •11.6 Операции резьбонарезания. Срезание припуска и формирование профиля резьбы
- •12. Особенности обработки деталей на многоцелевых станках с чпу
- •12.1 Общая характеристика оборудования, процессов и операций формообразования на многоцелевых станках
- •6. Фрезерование с врезанием под углом, 7. Профильное фрезерование.
- •12.2 Инструментальная оснастка многоцелевых станков с чпу
- •12.3 Конструкции инструментов для фрезерования
- •11.5 Выбор последовательности выполнения переходов при обработке поверхностей на многоцелевых станках
5.3 Технологические составляющие усилий резания
Физические составляющие усилия резания полностью определяют нагрузки на рабочих поверхностях инструмента.
Однако, использовать уравнения для силовых расчетов затруднительно по следующим причинам:
- в расчетные формулы входит угол наклона плоскости сдвига Ф, определяемый только экспериментально;
- в условиях резания значения коэффициентов трения не являются постоянными (для данных пар контактирующих материалов) величинами. Они изменяются от 0,004 до 6 (т.е. примерно на 3 порядка) вследствие изменения механизмов трения (Подробный анализ см. в разделе «Виды и механизмы износа»), поэтому использование справочных значений для трения скольжения недопустимо;
- формулы не учитывают динамических изменений сил резания, обусловленных процессом образования стружки, износом инструмента и вибрациями в системе резания;
- величины, направления составляющих и равнодействующих Rп, Rз, R усилия резания изменяются в процессе резания вследствие износа инструмента, что существенно снижает точность теоретических расчетов (рис. 5.4).
Рисунок 5.4. Технологические составляющие усилия резания
Поэтому для силовых расчетов чаще и эффективнее используют эмпирические зависимости, устанавливающие связь технологических составляющих усилия резания Px, Py , Pz с параметрами режима обработки и условиями резания. Схема разложения равнодействующей усилия резания на составляющие, расположенные в прямоугольной системе координат приведена на рис. 5.4 Откуда следует:
(1.11)
Это разложение силы имеет определенную цель. СоставляющаяPz служит для определения крутящего момента Mкр, необходимого для расчета зубчатых колес и валов механизма главного движения. Составляющая Px нужна для расчета звеньев механизма подачи и, наконец, Py - радиальная составляющая - для расчета станины и частей суппорта станка.
Для = 60; = 8; = 45 приближенно Py = 13Pz ;Px= 14Pz;
Расчет величины составляющих силы резания для практических целей ведется по эмпирическим формулам с использованием данных справочной литературы.
Расчет
составляющих силы резания: осевой
составляющей
,
радиальной
и
главной составляющей силы резания
производится
по эмпирическим формулам
PX=CPx. t XPx. s Ypx. v. ?P;
PY=CPy. tXpy.sYpy.v. ?P;
PZ=CPz. t XPz. s Ypz. v. ?P;
Здесь: P-проекция (составляющая) силы резания на направления X,Y и Z соответственно, H;
CP- константа, зависящая от свойств обрабатываемого материала, по сути своей представляющая удельную силу резания, приходящуюся на единицу площади поперечного сечения среза, Н/мм2;
kP - общий коэффициент, представляющий собой произведение частных коэффициентов, учитывающих конкретные условия резания.
6 Классификация инструментальных материалов. Составы, свойства, области применения
6.1 Сравнительная характеристика инструментальных материалов
Современные инструментальные материалы можно разделить на четыре основные группы: инструментальные быстрорежущие стали (в том числе и порошковые), твердые сплавы, режущая керамика, сверхтвердые композиционные материалы. Последние три группы материалов получают только методами порошковой металлургии.
Углеродистые и легированные инструментальные стали в современном инструментальном производстве находят весьма ограниченное применение в связи с их более низкими физико-механическими свойствами и эксплуатационными характеристиками по сравнению с другими инструментальными материалами. Такие стали применяют для изготовления ручного режущего инструмента соответствующего назначения.
К широко применяемым инструментальным материалам относятся быстрорежущие стали. Быстрорежущие стали вначале выпускались на основе карбидов вольфрама и хрома. Стремление повысить режущие свойства быстрорежущей стали и сократить расход дефицитного вольфрама привело к созданию гаммы быстрорежущих сталей, дополнительно легированных молибденом, ванадием и кобальтом. Быстрорежущие стали выпускаются нормальной, повышенной и высокой теплостойкости. Эти стали являются наиболее изученными, известны области их применения и физико-механические свойства. Но в настоящее время проявилась отчетливая тенденция по замене быстрорежущих сталей твердыми сплавами. Эта тенденция характерна не только для ведущих промышленно развитых стран (США, Япония, ФРГ, Швеция, Италия, Канада), но и развивающихся государств, прежде всего «новых индустриальных стран» (Бразилия, Тайвань, Корея).
Замена быстрорежущего инструмента твердосплавным при обработке заготовок из чугуна, конструкционной стали и особенно высоколегированных и трудно обрабатываемых сталей и сплавов позволяет повысить скорость резания в 1,5-2 раза и более или увеличить стойкость не менее чем в 3-5 раз. Особенно перспективным является применение многогранных неперетачиваемых пластин с износостойким покрытием.
В настоящее время в промышленности используется широкая номенклатура твердых сплавов: твердые сплавы на основе монокарбида вольфрама, сложных карбидов титана-вольфрама, титана-тантала-вольфрама, карбида титана и т.д.
Твердые сплавы являются наиболее универсальным материалом из всех известных, позволяют выполнять практически все виды токарных и фрезерных работ, обрабатывать различные материалы и эффективно заменяют быстрорежущие стали. Преимущества твердых сплавов наглядно иллюстрируются графиками, приведенными на рис. 6.1, 6.2, и табл. 6.1.
Таблица 6.1
Теплостойкость и допустимая скорость резания инструментальных материалов
Материал |
Теплостойкость, К |
Допустимая скорость резания, м/мин |
Углеродистая сталь Легированная сталь Быстрорежущая сталь Твердые сплавы: вольфрамовые титановольфрамовые ТК и ТТК с покрытием безвольфрамовые Керамика |
523 – 570 623 – 686 873 – 896
1173 – 1200 1273 – 1300 1273 – 1373 1073 – 1100 1473 – 1500 |
10 – 15 15 – 30 40 – 60
120 – 200 150 – 250 200 – 300 100 – 300 400 – 600 |
Физико-технические характеристики твердых сплавов, необходимые для различных условий обработки, зависят от их состава (количества карбидов и связующей фазы), свойств входящих в них компонентов и технологии получения. Так, увеличение содержания кобальтовой связующей в одно-карбидных сплавах до 20-25 % повышает предел прочности при изгибе и уменьшает прочность на сжатие и твердость. Увеличение размера карбидных зерен повышает вязкость, но приводит к уменьшению твердости.
Примерные годы появления режущих материалов
Рис. 6.1. - Диаграмма роста скорости резания в связи с созданием новых режущих материалов.
Рис. 6.2. Изменение твердости инструментальных и обрабатываемых материалов в зависимости от температуры: 1 – керамика ЦМ332; 2 – ВК2; 3 – Т30К4; 4 – Т15К6; 5 –ВК8; 6 – Т5К10; 7 – Р18; 8 – У10А; 9 – Р9; 10 – 40ХНМА; 11 – 18ХГТ
