Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ ПФ-3.04.16.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
34.7 Mб
Скачать

5.3 Технологические составляющие усилий резания

Физические составляющие усилия резания полностью определяют нагрузки на рабочих поверхностях инструмента.

Однако, использовать уравнения для силовых расчетов затруднительно по следующим причинам:

- в расчетные формулы входит угол наклона плоскости сдвига Ф, определяемый только экспериментально;

- в условиях резания значения коэффициентов трения не являются постоянными (для данных пар контактирующих материалов) величинами. Они изменяются от 0,004 до 6 (т.е. примерно на 3 порядка) вследствие изменения механизмов трения (Подробный анализ см. в разделе «Виды и механизмы износа»), поэтому использование справочных значений для трения скольжения недопустимо;

- формулы не учитывают динамических изменений сил резания, обусловленных процессом образования стружки, износом инструмента и вибрациями в системе резания;

- величины, направления составляющих и равнодействующих Rп, Rз, R усилия резания изменяются в процессе резания вследствие износа инструмента, что существенно снижает точность теоретических расчетов (рис. 5.4).

Рисунок 5.4. Технологические составляющие усилия резания

Поэтому для силовых расчетов чаще и эффективнее используют эмпирические зависимости, устанавливающие связь технологических составляющих усилия резания Px, Py , Pz с параметрами режима обработки и условиями резания. Схема разложения равнодействующей усилия резания на составляющие, расположенные в прямоугольной системе координат приведена на рис. 5.4 Откуда следует:

(1.11)

Это разложение силы имеет определенную цель. СоставляющаяPz служит для определения крутящего момента Mкр, необходимого для расчета зубчатых колес и валов механизма главного движения. Составляющая Px нужна для расчета звеньев механизма подачи и, наконец, Py - радиальная составляющая - для расчета станины и частей суппорта станка.

Для = 60; = 8; = 45 приближенно Py = 13Pz ;Px= 14Pz;

Расчет величины составляющих силы резания для практических целей ведется по эмпирическим формулам с использованием данных справочной литературы.

Расчет составляющих силы резания: осевой составляющей , радиальной и главной составляющей силы резания производится по эмпирическим формулам

PX=CPx. t XPx. s Ypx. v. ?P;

PY=CPy. tXpy.sYpy.v. ?P;

PZ=CPz. t XPz. s Ypz. v. ?P;

Здесь: P-проекция (составляющая) силы резания на направления X,Y и Z соответственно, H;

CP- константа, зависящая от свойств обрабатываемого материала, по сути своей представляющая удельную силу резания, приходящуюся на единицу площади поперечного сечения среза, Н/мм2;

kP - общий коэффициент, представляющий собой произведение частных коэффициентов, учитывающих конкретные условия резания.

6 Классификация инструментальных материалов. Составы, свойства, области применения

6.1 Сравнительная характеристика инструментальных материалов

Современные инструментальные материалы можно разделить на четыре основные группы: инструментальные быстрорежущие стали (в том числе и порошковые), твердые сплавы, режущая керамика, сверхтвердые композиционные материалы. Последние три группы материалов получают только методами порошковой металлургии.

Углеродистые и легированные инструментальные стали в современном инструментальном производстве находят весьма ограниченное применение в связи с их более низкими физико-механическими свойствами и эксплуатационными характеристиками по сравнению с другими инструментальными материалами. Такие стали применяют для изготовления ручного режущего инструмента соответствующего назначения.

К широко применяемым инструментальным материалам относятся быстрорежущие стали. Быстрорежущие стали вначале выпускались на основе карбидов вольфрама и хрома. Стремление повысить режущие свойства быстрорежущей стали и сократить расход дефицитного вольфрама привело к созданию гаммы быстрорежущих сталей, дополнительно легированных молибденом, ванадием и кобальтом. Быстрорежущие стали выпускаются нормальной, повышенной и высокой теплостойкости. Эти стали являются наиболее изученными, известны области их применения и физико-механические свойства. Но в настоящее время проявилась отчетливая тенденция по замене быстрорежущих сталей твердыми сплавами. Эта тенденция характерна не только для ведущих промышленно развитых стран (США, Япония, ФРГ, Швеция, Италия, Канада), но и развивающихся государств, прежде всего «новых индустриальных стран» (Бразилия, Тайвань, Корея).

Замена быстрорежущего инструмента твердосплавным при обработке заготовок из чугуна, конструкционной стали и особенно высоколегированных и трудно обрабатываемых сталей и сплавов позволяет повысить скорость резания в 1,5-2 раза и более или увеличить стойкость не менее чем в 3-5 раз. Особенно перспективным является применение многогранных неперетачиваемых пластин с износостойким покрытием.

В настоящее время в промышленности используется широкая номенклатура твердых сплавов: твердые сплавы на основе монокарбида вольфрама, сложных карбидов титана-вольфрама, титана-тантала-вольфрама, карбида титана и т.д.

Твердые сплавы являются наиболее универсальным материалом из всех известных, позволяют выполнять практически все виды токарных и фрезерных работ, обрабатывать различные материалы и эффективно заменяют быстрорежущие стали. Преимущества твердых сплавов наглядно иллюстрируются графиками, приведенными на рис. 6.1, 6.2, и табл. 6.1.

Таблица 6.1

Теплостойкость и допустимая скорость резания инструментальных материалов

Материал

Теплостойкость, К

Допустимая скорость резания, м/мин

Углеродистая сталь

Легированная сталь

Быстрорежущая сталь

Твердые сплавы:

вольфрамовые

титановольфрамовые ТК и ТТК

с покрытием

безвольфрамовые

Керамика

523 – 570

623 – 686

873 – 896

1173 – 1200

1273 – 1300

1273 – 1373

1073 – 1100

1473 – 1500

10 – 15

15 – 30

40 – 60

120 – 200

150 – 250

200 – 300

100 – 300

400 – 600

Физико-технические характеристики твердых сплавов, необходимые для различных условий обработки, зависят от их состава (количества карбидов и связующей фазы), свойств входящих в них компонентов и технологии получения. Так, увеличение содержания кобальтовой связующей в одно-карбидных сплавах до 20-25 % повышает предел прочности при изгибе и уменьшает прочность на сжатие и твердость. Увеличение размера карбидных зерен повышает вязкость, но приводит к уменьшению твердости.

Примерные годы появления режущих материалов

Рис. 6.1. - Диаграмма роста скорости резания в связи с созданием новых режущих материалов.

Рис. 6.2. Изменение твердости инструментальных и обрабатываемых материалов в зависимости от температуры: 1 – керамика ЦМ332; 2 – ВК2; 3 – Т30К4; 4 – Т15К6; 5 –ВК8; 6 – Т5К10; 7 – Р18; 8 – У10А; 9 – Р9; 10 – 40ХНМА; 11 – 18ХГТ