- •Геометрические и кинематические параметры процессов резания. Терминология, основные понятия и определения.
- •Конструктивные параметры режущей части инструмента. Углы резания
- •Деформационные процессы в зоне резания
- •Контактные и тепловые явления при механической обработке материалов
- •4.1 Наростообразование
- •4.2 Виды износа режущего инструмента
- •4.3 Механизм изнашивания режущего инструмента.
- •5 Физические и технологические составляющие усилий резания.
- •5.1 Работа резания и ее составляющие
- •5.2 Физические составляющие сил резания
- •5.3 Технологические составляющие усилий резания
- •6 Классификация инструментальных материалов. Составы, свойства, области применения
- •6.1 Сравнительная характеристика инструментальных материалов
- •6.2 Твердые сплавы. Взаимосвязь структуры и свойств
- •6.3 Классификация твердых сплавов
- •6.3.1 Карбидовольфрамовые твердые сплавы.
- •6.3.2 Титановольфрамовые твердые сплавы
- •6.3.3 Титанотанталовольфрамовые твердые сплавы
- •6.3.4 Безвольфрамовые твердые сплавы
- •6.4 Классификация твердых сплавов по областям применения при обработке резанием
- •6.5 Твердосплавной инструмент с износостойкими покрытиями
- •6.5.1 Химические методы осаждения покрытий. Свойства, области применения
- •6.5.2 Методы физического осаждения износостойких покрытий. Свойства, области применения
- •6.6 Режущая керамика. Составы, свойства, применение
- •6.7 Сверхтвердые материалы. Композиты. Классификация, области применения.
- •6.7.1 Сверхтвердые инструментальные материалы (стм)
- •7 Принципы построения технологических процессов при обработке материалов резанием.
- •7.1. Понятие о припуске.
- •7.2. Некоторые сведения по технологии машиностроения
- •Виды расчета режимов резания
- •Процессы и операции формообразования точением
- •9.1 Виды токарной обработки
- •9.2 Параметры резания при точении
- •9.3 Инструмент для токарной обработки
- •9.3.1 Державки. Конструкции и классификация
- •9.3.2 Конструкции и классификация сменных многогранных пластин
- •9.4 Рекомендации по выбору геометрии режущей части сменных многогранных пластин
- •9.5 Методика расчета режимов резания при точении
- •1. Назначение глубины резания t
- •3. Расчет скорости резания V
- •10 Процессы и операции фрезерования
- •10.1 Виды фрезерования
- •10.2 Инструмент для фрезерования
- •10.3 Конструктивное исполнение сборных фрез, оснащенных сменными многогранными пластинами
- •10.4 Физические и геометрические параметры на различных операциях фрезерования
- •10.5 Расчёт основного машинного времени при фрезеровании
- •10.6 Процессы фрезерования с круговой интерполяцией
- •11 Процессы формообразования отверстий. Классификация сверлильных операций
- •11.1 Особенности процесса резания (формообразования) при сверлении.
- •11.2 Силы, вращающий момент, потребление мощности при сверлении
- •11.3 Особенности заточки и эксплуатации спиральных свёрл
- •11.4 Зенкерование и зенкование.
- •11.4.1 Геометрические параметры резания при зенкеровании и зенковании
- •11.4.2 Силы, вращающий момент, потребляемая мощность при зенкеровании и зенковании
- •Развёртывание.
- •11.6 Операции резьбонарезания. Срезание припуска и формирование профиля резьбы
- •12. Особенности обработки деталей на многоцелевых станках с чпу
- •12.1 Общая характеристика оборудования, процессов и операций формообразования на многоцелевых станках
- •6. Фрезерование с врезанием под углом, 7. Профильное фрезерование.
- •12.2 Инструментальная оснастка многоцелевых станков с чпу
- •12.3 Конструкции инструментов для фрезерования
- •11.5 Выбор последовательности выполнения переходов при обработке поверхностей на многоцелевых станках
6.3.3 Титанотанталовольфрамовые твердые сплавы
Титанотанталовольфрамовые ТТК (WC-TiC-TaC-Co) отличаются повышенной прочностью, увеличением работы деформации при высоких температурах, высокой твердостью. Карбид тантала уменьшает ползучесть твердых сплавов, существенно повышает предел усталости при циклическом нагружении, а также термостойкость и стойкость к окислению на воздухе. Поэтому танталсодержащие твердые сплавы отличаются повышенной стойкостью благодаря уменьшению лункообразования и разрушения под действием термодинамических и усталостных нагрузок.
Сплавы ТТК применяются для следующих видов обработки:
ТТ7К12 – тяжелое черновое точение стальных поковок, штамповок и отливок по корке с раковинами при наличии песка, шлака и различных неметаллических включений при неравномерном сечении среза и наличии ударов; все виды строгания и тяжелого чернового фрезерования углеродистых и легированных сталей;
ТТ8К6 – чистовое и получистовое точение, растачивание, фрезерование и сверление серого, ковкого и отбеленного чугуна; непрерывное точение с небольшими сечениями среза стального литья, высокопрочных нержавеющих сталей; обработка сплавов цветных металлов и некоторых марок титановых сплавов при резании с малыми и средними сечениями среза;
ТТ10К8-Б – черновая и получистовая обработка некоторых марок труднообрабатываемых материалов, нержавеющих сталей аустенитного класса, маломагнитных сталей и жаропрочных сталей и сплавов, в том числе титановых;
ТТ20К9 – фрезерование стали и другие виды обработки при повышенных требованиях к сопротивлению твердого сплава тепловым и механическим циклическим нагрузкам.
6.3.4 Безвольфрамовые твердые сплавы
В настоящее время разработано много керметов на основе различных тугоплавких соединений. Доминирующую роль продолжают сохранять твердые
сплавы на основе карбида, карбонитрида и нитрида титана. Наиболее перспективными безвольфрамовыми твердыми сплавами БВТС на данном этапе являются керметы на основе карбонитрида титана. При изготовлении БВТС используют различные легирующие добавки и типы связующих. В зависимости от типа инструмента и области его применения используются керметы следующих составов: Ti(C,N)- Ni; Ti(C,N)- NiMo; (Ti,Mo) (C,N)- Ni/Mo; (Ti,Ta) (C,N)- Ni/Fe(Mo); (Ti,W) (C,N)-TaC- WC- Co; Ti(C,N)- (W,Ti)C- Co; TiC- TiN- Ni/Mo(W); TiC- TiN- Mo2C- Ni; TiC- TiN- WC- Mo2C-Ni/Co и т.д.
а
б
Рисунок 6.6 – Микроструктура безвольфрамовых твердых сплавов ТН20 (20% Ni – 80% TiC) (а) и КНТ16 (16% Ni Mo – 84% TiCN) (б)
В сравнении со сплавами на основе карбида вольфрама БВТС отличаются повышенной химической стабильностью и износостойкостью передней поверхности сменных многогранных пластин. Присущие первому поколению керметов относительно низкие значения прочности на изгиб и ударной вязкости удалось к настоящему времени значительно повысить и приблизить к этим показателям для карбида вольфрама (ударная вязкость до 10 МПа·м1/2, прочность на изгиб до 2300 Н/мм2).Все это делает керметы наиболее перспективным материалом для изготовления сменных многогранных пластин, способных работать при скоростях резания до 500 м/мин; в ряде случаев обработка пластинами из БВТС позволяет избежать операции шлифования.
Первые промышленные твердые сплавы на основе карбида титана представляли собой твердый раствор ТiС-Мо2С со связующими металлами, содержащими 10-15 % Ni; Ni-Сr; Ni-Мо или Ni-Мо2С (например, сплав “Titanits” разработанный фирмой “MetallverkPlansee AG” (Австрия) имел следующий состав: 42,5 % TiC; 42,5 % Mo2C; 14 % Ni; 1 % Cr). эти твердые сплавы не нашли промышленного применения прежде всего из-за высокой хрупкости и низкой прочности. Однако после исследований Хьюменика, обнаружившего значительное влияние на свойства безвольфрамовых твердых сплавов смачиваемости карбида титана жидкой фазой, эти сплавы вновь привлекли внимание исследователей. Содержание Мо в сплавах значительно сократили и частично или полностью вводили его в металлическую связку в виде Ni-Мо, а в качестве твердой составляющей использовали ТiС. В России наиболее известны две марки безвольфрамовых твердых сплавов: ТН20 и КНТ16.
Инструменты из сплавов на основе карбида титана выдерживают изменение скорости резания в более широком диапазоне по сравнению со сплавами на основе карбида вольфрама или керамикой, а также обеспечивают высокое сопротивление износу по передней поверхности и окалиностойкость, незначительную склонность к адгезионному взаимодействию и низкий коэффициент трения. Они обладают меньшей теплопроводностью, чем сплавы ВК и ТК, и большим коэффициентом линейного термического расширения. Эти обстоятельства должны учитываться при пайке резцов, которую следует проводить с большими предосторожностями, чем для обычных твердых сплавов. Безвольфрамовые сплавы обладают повышенной чувствительностью к условиям теплоотвода при резании.
Другой большой группой БВТС являются сплавы на основе системы TiC-TiN-Ni-Mo. Благоприятное воздействие добавок нитрида титана в твердые сплавы объясняется прежде всего уменьшением размера карбидного зерна. C введением в состав твердых сплавов системы TiC-Ni-Mo нитрида титана существенно повышается их жаростойкость. Азот, выделившийся в результате окисления сплавов, диффундирует в поверхностный слой образца и замедляет протекание реакции окисления на границе внутренний окисленный слой - сплав.
К недостаткам сплавов системы TiC-Ni-Mo-TiN относятся сложность получения сплавов с заданным содержанием азота в связи с интенсивным азотированием сплава при спекании, плохая обрабатываемость изделий из этих сплавов алмазным инструментом.
