- •1 Основные физические свойства жидкости и газов
- •2 Основные физ. Свойства жидкостей и газов
- •3 Первое и второе свойство гидростатического давления
- •4 Диф. Уравнение Эйлера равновесия жидкости.
- •5 Относительный покой жидкости
- •6 Основным законом (уравнением) гидростатики называется уравнение: , где
- •7 Единицы измерения давления. Эпюры давления
- •8 Закон Паскаля. Закон Архимеда
- •9. Сила давления жидкости на плоскую стенку. Центр давления.
- •11. Раздел «гидродинамика». Кинематика жидкости
- •12. Расход жидкости. Средняя скорость потока. Уравнение неразрывности.
- •13. Дифференциальные уравнения Эйлера установившегося движения идеальной жидкости.
- •14. Уравнение Бернулли для элементарной струйки невязкой (идеальной) жидкости (вывод в общем виде, физ.Смысл уравнения).
- •19.Линейные и местные гидравлические сопротивления
- •20.Режимы движения жидкостей. Опыт Рейнольдса.
- •26 Закон гидравлич сопротивления при ламинарном движении. Коэф Дарси.
- •29) Структура потока,касательные напряжения и эпюра скорости при турбулентном движении.
- •30) Понятие о гидравлически гладких и гидравлически шероховатых стенках.
- •31) Определение коэффициента потерь на трение по длинне.(лямбда) при турбулентном движении.
- •33) Гидравлический расчёт трубопроводов и открытых русел. Классификация трубопроводов. Обобщённые параметры простого трубопровода.
- •34) Характеристики трубопроводов.
- •35)Основы технико-экономических расчетов простых трубопроводов. Технический расчет трубопроводов.
- •36. Последовательное и параллельное соединение трубопроводов
- •1) Последовательное соединение
- •2)Параллельное соединение
- •46) Истечение жидкости через насадки.
- •49) Подъемная сила. Сила лобового сопротивления .
- •52)Основы гидрометрии.
49) Подъемная сила. Сила лобового сопротивления .
Подъёмная сила — составляющая полной аэродинамической силы, перпендикулярная вектору скорости движения тела в потоке жидкости или газа, возникающая в результате несимметричности обтекания тела потоком. Полная аэродинамическая сила — это интеграл от давления вокруг контура профиля крыла.
Лобовое сопротивление — сила, препятствующая движению тел в жидкостях и газах. Лобовое сопротивление складывается из двух типов сил: сил касательного (тангенциального) трения, направленных вдоль поверхности тела, и сил давления, направленных по нормали к поверхности. Сила сопротивления является диссипативной силой и всегда направлена против вектора скорости тела в среде. Наряду с подъёмной силой является составляющей полной аэродинамической силы.
Сила лобового сопротивления обычно представляется в виде суммы двух составляющих: сопротивления при нулевой подъёмной силе и индуктивного сопротивления. Каждая составляющая характеризуется своим собственным безразмерным коэффициентом сопротивления и определённой зависимостью от скорости движения.
Лобовое сопротивление может способствовать как обледенению летательных аппаратов (при низких температурах воздуха), так и вызывать нагревание лобовых поверхностей ЛА при сверхзвуковых скоростях ударной ионизацией.
50) Основы гидротранспорта. Установки гидравлического транспорта служат для перемещения насыпного груза по трубам и желобам в струе жидкости (воды). Смесь груза с водой называется гидросмесь или пульпа. Консистенцию пульпы определяет соотношение количества составляющих ее твердого и жидкого компонентов. Принцип действия гидравлических транспортных установок заключается в передаче энергии движущейся воды частицам насыпного груза и перемещении их с большой скоростью.
Гидротранспортные установки разделяют на напорные и безнапорные. По желобам (каналам) пульпа перемещается самотеком в сторону движения. По трубопроводам пульпа перемещается самотеком или под напором с помощью насоса: в горизонтальном направлении, вниз или вверх.
Гидротранспорт применяется в котельных ТЭС (для уборки золы, шлака); на металлургических заводах (для уборки шлаков); в горной промышленности (подъем на поверхность угля, руды и подача в шахты закладочного материала); на обогатительных фабриках; в химической промышленности; в строительстве (перемещение размытого струей воды грунта).
К преимуществам гидравлического транспорта относятся высокая производительность и большая длина транспортирования без перегрузок по сложной трассе с подъемами под любым углом и по вертикали; отсутствие механического оборудования на трассе трубопровода (за исключением сосредоточенных в отдельных пунктах машинных отделений) и, следовательно, несложное техническое обслуживание; возможность совмещения транспортирования с некоторыми технологическими процессами («мокрым» обогащением полезных ископаемых, гашением и гранулированием шлаков, сортированием по крупности и т. п.); возможность полной автоматизации и, следовательно, невысокая трудоемкость, и пр. Все это определяет во многих случаях более высокие экономические показатели гидротранспорта по сравнению с механическим транспортом – конвейерным, автомобильным, рельсовым.
Недостатками гидравлического транспорта, сужающими область его применения, являются ограничения по роду и характеристикам перемещаемых грузов, в частности по их крупности, что вызывает нередко необходимость предварительного дробления груза; повышенный износ трубопровода и входящих в соприкосновение с гидросмесью механических частей при перемещении абразивных грузов; увеличенный расход энергии; потребность в больших количествах воды; опасность замерзания в зимних условиях; повышение влажности в закрытых помещениях и пр.
53)
Измерение скоростей и расходов жидкостей.
Если рассматривать
установившееся движение и написать
ур-ие Бернулли для сечений на свободной
пов-ти резервуара и сжатого сечения
С-С, то можно получить ф-лы для определения
скорости υс и расхода Q:
,
где
- коэффициент
скорости;
μ=εφ- коэффициент расхода;
