- •2. Термодинамиканың екінші бастамасы. Энтропия. Қайтымды және қайтымсыз процесстер. Айналмалы циклдің пәк-і.
- •Интегралдың нолге тең болуы кейбір функцияның толық дифференциал екенін қөрсетеді. Яғни сол функция тек жүйенің күйімен ғана анықталадыда жүйе сол күйге келген жолға тәуелсіз болады.
- •§11.Термодинамиканың екінші заңы
- •11.1.Тұйық процестер
- •11.2.Карно циклі
- •11.3.Энтропия
- •2. Дененің ішкі энергиясының есебінен шексіз жұмыс атқару мүмкін емес. .
- •3. Ньютонның заңдары. Инерциялық күштер, Серпімді күштер. Үйкеліс күштер. Бүкіл әлемдік тартылыс заңы. Космостық жылдамдықтар. Ауырлық күші және салмақ. Салмақсыздық күйі.
- •4 Термодинамиканың бірінші бастамасы.Адиабаталық процесс. Политропа теңдеуі.
- •Термодинамиканың і заңын процестерге қолдану
- •5 Өшетін және еріксіз тербелістер, олардың дифференциал теңдеулері. Еріксіз тербелістің амплитудасы мен фазасы, резонанс.
- •6.3.Өшетiн тербелiстер
- •6.4.Ерiксiз тербелiстер
- •6 Екі металл контактісі. Вольта заңдары.
- •7. Сақталу заңдары. Импульс. Импульстің сақталу заңы. Жұмыс. Куат. Кинетикалық, потенциалдық энергия. Механикалық энергияның сақталу заңы. Екі дененің соқтығысуы. Импульс моменті, оның сақталу заңы.
- •4.1 Сурет
- •8.Нақты газдар. Ван-дер-Ваальс теңдеуі және изотермалары. Нақты газдың ішкі энергиясы.
- •9. Тербелістер мен толқындар физикасы, толқындардың әр түрлі ортада таралуы. Гармоникалық осцилятор. Тербелмелі қозғалыстың энергиясы. Гармониялық тербелістерді қосу.
- •10. Жартылай өткізгіштердің электр өткізгіштігі. Жартылай өткізгішті диодтар мен транзисторлар.
- •12. Электр зарядының сақталу заңы. Электростатикалық өрістің негізгі заңы мен сипаттамалары.
- •13. Инерция моменті және күш моменті. Қатгы дененің айналмалы қозғалысының негізгі теңдеуі. Айналған қатты дененін кинетикалық энергиясы. Қатты дененің серпімді деформациялары
- •4.2 Сурет
- •1) Сызықтық зарядталған дене
- •2) Беттік зарядталған дене
- •3) Көлемдік зарядталған дене
- •15. Кирхгофтың 1-ші және 2-ші ережесі. Тармақталған тізбек мысалында түсіндіру.
- •16. Фазалық тепе-теңдік және ауысулар. Газ молекулаларының өзара әрекеттесу күштері. Ван-дер-Ваальс теңдеуі. Нақты газдың изотермасы. Нақты газдың энергиясы.
- •17. Гармоникалық тербеліс теңдеуі және энергиясы. Физикалық маятник.
- •18. Электростатик өрістегі нүктелі зарядтың кернеулігі мен потенциалы. Өріс кернеулігі пен потенциалы арасындағы байланыс.
- •1) Сызықтық зарядталған дене
- •2) Беттік зарядталған дене
- •Ағынның үздiксiздiк теңдеуi
- •20. Электростатикалық өрістегі өткізгіштер мен диэлектриктер. Диполь. Диэлектритердің поляризациялануы. Сегнетоэлектриктер.
- •22. Электростатикалық өріс сыйымдылығы. Конденсаторлар. Электр зарядтары мен конденсаторлардың әсерлесу энергиясы.
- •23. Молекулалардың жылдамдықтары бойынша үлестірілуі. Барометрлік формула. Больцман таралуы. Молекуланың еркін жүрген жолының орташа ұзындығы.
- •24. Тұрақты электр тогы, оның сипаттамалары мен токтың пайда болу шарттары. Ом заңының интерграл және дифференциал көрінісі, оны қорытып шығару.
- •Тізбектің бөлігі үшін Ом заңы
- •Дифференциал түріндегі Ом заңы
- •Осы өрнек дифференциал түріндегі Ом заңы деп аталады.
- •25. Электр тогы. Электр тогы және оның күші мен тығыздығы. Тізбек бөлігі үшін Ом заңы. Өткізгіштердің кедергісі, олардың температураға тәулділігі. Асқын өткізгіштік.
- •26. Абсолют серпімді және серпімсіз соққылар. Серпімді дене. Гук заңы.
- •27. Ток көздерінің эқк. Толық тізбек үшін Ом заңы. Тармақталған тізбек үшін Кирхгоф ережелері, Ом және Джоуль-Ленц заңдарының дифференциалдық түрі. Тұрақты электр тогы
- •Дифференциал түріндегі Ом заңы
- •Осы өрнек дифференциал түріндегі Ом заңы деп аталады.
- •Джоуль - Ленц заңы
- •28. Айналмалы қозғалыс кинематикасы.
- •29. Айналмалы қозғалыс динамикасы. Инерция моменті. Штейнер теоремасы.
- •4.2 Сурет
- •30. Тұрақты токтың қуаты. Джоуль-Ленц заңының интегралдық және дифференциалдық түрлері. Джоуль - Ленц заңы
- •31. Термодинамиканың бірінші бастамасы. Жүйенің ішкі энергиясы. Газ көлемі өзгергенде істелетін жұмыс. Идеал газдың ішкі энергиясы, жылу сыйымдылығы. Термодинамиканың бірінші заңы
- •10.1.Ішкі энергия
- •10.2.Термодинамикалық жұмыс
- •10.3.Жылу мөлшері
- •10.4.Термодинамиканың і заңын процестерге қолдану
- •32. Тармақталған тізбектер үшін Кирхгоффтың бірінші және екінші ережелері. Тізбек арқылы түсіндіру.
- •34. Еркін және еріксіз механикалық тербелістердің дифференциал көріністері және олардың шешімдері. Резонанс.
- •35. Электростатикалық өрісітегі диэлектриктер. Электростатикалық индукция векторы. Екі диэлектриктердің шекарасы. Электростатикалық өрістегі өткізгіштер. Кулон күштерінің жұмысы.
- •36. Материалдық нүктенің кинематикалық сипаттамасы.
- •37. Потенциалды энергия Потенциал. Электрлік сыйымдылық. Конденсаторлар және оларды қосу. Электр өрісінің энергиясы.
- •Электр өрісінің энергиясы
- •38. Материалдық нүктенің динамикалық сипаттамасы. Динамиканың негізгі заңдары.
- •39. Термодинамиканың екінші және үшінші бастамалары. Жылу машинасы. Жылу машинасының пайдалы әсер коэффициенті. Карно теоремасы. Карно циклы. Тоңазытқыш машина.
- •§11.Термодинамиканың екінші заңы
- •11.1.Тұйық процестер
- •11.2.Карно циклі
- •11.3.Энтропия
- •2. Дененің ішкі энергиясының есебінен шексіз жұмыс атқару мүмкін емес. .
- •40. Толқындық процесстер. Көлденең және қума толқындар. Толқын теңдеуі.
- •41. Сұйықтардағы молекулалық құбылыстар. Молекулалық қысым. Беттік керілу. Капиллярлық құбылыстар. Ерітінділер. Осмостық қысым.
- •42. Потенциалдар айырымы. Электр қозғаушы күш. Кернеу. Джоуль-Ленц заңының интрегралды және дифференциалды көрінісі, оны қорытып шығару.
- •43. Клапейрон-Клаузиус теңдеуі. Үштік нүкте. Күй диаграммасы. Фазалық ауысу. 1 және 2 шекті фазалық ауысу.
- •44. Газдардағы электр тогы. Газ разряды. Плазма.
- •45. Электростатика. Кулон заңы. Электростатикалық өрісі, оның кернеулігі. Гаусс теоремасы. Электр диполі.
- •46. Газ заңдары. Мкт-ның негізгі теңдеуі. Молекулалардың еркін жүгіру жолы. Газдардың молекула-кинетикалық теориясы
- •9.1.Молекула –кинетикалық теорияның негізгі теңдеуі
- •9.2.Газ молекуласының еркіндік дәрежесі
- •9.3.Максвелл таралуы
- •9.4.Больцман таралуы
- •47. Механикалық жұмыс, қуат және энергия. Механикадағы сақталу заңдары. Сақталу заңдары
- •3.1.Импульстiң сақталу заңы
- •3.2.Энергияның сақталу заңы
- •3.3.Импульс моментiнiң сақталу заңы
- •48. Вакуумдағы электр тогы. Термоэлектронды эмиссия.
- •49.Айналмалы қозғалыс динамикасының негізгі заңы. Импульс моментінің сақталу заңы.
- •Импульстiң сақталу заңы
- •50.Сыртқы күштердің жұмысы. Электр қозғаушы күші.
4.1 Сурет
О нүктесіне қатысты материалдық нүктенің импульс моменті (4.1 сурет) мына векторға тең
.
(4.2)
(4.2) диффериенциалдап моменттер теңдеуін аламыз:
(4.3)
Материалдық нүктелер жүйесінің импульсы сол нүктелердің барлықтарының қосындысына тең:
,
(4.4)
мұндағы
– материалдық
нүкте импульсы
i,
n
– жүйедегі
нүктелер саны.
Материалдық нүктелер жүйесінің импульс моменті сол нүктелердің барлықтарының импульс моменттерінің қосындысына тең:
,
(4.5)
мұндағы
–i
нші нүктенің импульс моменті.
8.Нақты газдар. Ван-дер-Ваальс теңдеуі және изотермалары. Нақты газдың ішкі энергиясы.
Нақты газдар, сұйықтар, қатты денелер.
Егер газ идеалдық шарттарға бағынбаса оны нақты газ деп атайды. Нақты газдың күй теңдеуін алу үшін Голландия физигі Ван-дер-Ваальс Менделеев-Клапейрон теңдеуіне молекула өлшемдері мен олардың өзара тартылу күштерін ескеретін түзетулерді еңгізді.
Нақты газдың ішкі энергиясы: Менделеев-Клапейрон теңдеуі молекулалары бір-бірімен әсерлеспейтін және нүкте деп қарастырылатын идеал газдардың күйін анықтайды. Нақты газдардың молекуларының өлшемдері болады және олар бір-бірімен өзара әсерлеседі. Нақты газдардың күйін анықтайтын теңдеуді алу үшін голланд ғалымы Ван-дер-Ваальс Менделеев-Клапейрон теңдеуіне молекулаларды өлшемдерін және өзара әсерлесуін ескеретін түзету енгізді. Бұл алынған теңдеу нақты газдардың күй теңдеуі немесе Ван-дер-Ваальс теңдеуі деп аталады. Мөлшері 1 моль нақты газ үшін Ван-дер-Ваальс теңдеуі келесі түрде жазылады:
Нақты газдар ішкі энергиясы келесі формуламен анықталады:
Нақты газдың ішкі энергиясы. Джоуль-Томсон эффектісі. Нақты
газ молекулаларының арасындағы өз ара әсерлердің нәтижесінде олардың өз ара потенциялық энергиясы Ер пайда болады да, бұл энергия газ молекулаларының Ек қозғалыс кинетикалық энергиясымен қатар газдың ішкі энергиясының құрамына кіреді:
U =Ek + Ep.
Бізге газдың киломоліндегі молекулалардың кинетикалық энергиясы
Е k = CV Т,
яғни температура функциясы екені белгілі.
Молекулалардың өз ара потенциялық энергиясы, олардың бір-бірінен
орташа ара қашықтықтарына байланысты. Сондықтан Ер газ көлемінің функциясы болуға тиіс. Демек, нақты газдың ішкі энергиясы мына екі параметрдің функциясы екен: Т және V.
Газ ұлғайған кезде молекулалардың арасындағы тартылыс күштерді жеңуге кеткен жұмыс істелуге тиіс. Механикадан ішкі күштерде қарсы істелетін жұмыс системаның, потенциялық энергиясын арттыруға жұмсалатыны белгілі. Сыртқы күштерді жеңуге кеткен жұмыстың
өрнек арқылы анықталатыны сияқты киломоліндегі молекулалардың арасында әсер етуші ішкі күштерді жеңу жұмысын да
түрінде
жазуымызға
болады,
мұндағы
рi
-
Ван-дер-Ваальстық газ
жағдайында
-ға
тең ішкі қысым.
-.ны
молекулалардың
өз
ара потенциялық энергиясының
dЕр өсімшесіне теңестіре отырып, мынаны аламыз;
Бұл өрнекті интегралдау потенциялық энергия үшін мынаны береді:
Интегралдау тұрақтысының мәнін U ішкі энергияға арналған өрнек шекті жағдайда, яғни көлем шексіздікке дейін ұлғайған жағдайда идеал газдың ішкі энергиясына арналған өрнекке айналатындай етіп алуымыз керек (көлемді ұлғайтқан кезде нақты газдардың бәрі өздерінің қасиеттері жөнінен идеал газға жуықтайтынын еске салайық). Осы пікірлерге сүйеніп, интегралдау тұрақтысын нольге тең деп алу керек. Сонда нақты газдың ішкі энергиясы үшін мынадай өрнек шығады:
(1)
бұдан біз ішкі энергияның температураны арттырған жағдайда да, көлемді арттырған жағдайда да өсетінін көреміз.
Сыртқы денелермен жұмыс атқарылмаса және олармен жылу алмасуы болмаса, көлемі өзгергенде нақты газдың температурасыда өзгереді.
Тек нақты газдарда болатын бұл құбылысты Джоуль-Томсон эффектісі дейді. Егер ұлғаю кезінде газдың температурасы төмендесе, Джоуль-Томсон эффектісін оң дейді, ал егер газдың температурасы жоғарласа – теріс дейді.
