- •2. Термодинамиканың екінші бастамасы. Энтропия. Қайтымды және қайтымсыз процесстер. Айналмалы циклдің пәк-і.
- •Интегралдың нолге тең болуы кейбір функцияның толық дифференциал екенін қөрсетеді. Яғни сол функция тек жүйенің күйімен ғана анықталадыда жүйе сол күйге келген жолға тәуелсіз болады.
- •§11.Термодинамиканың екінші заңы
- •11.1.Тұйық процестер
- •11.2.Карно циклі
- •11.3.Энтропия
- •2. Дененің ішкі энергиясының есебінен шексіз жұмыс атқару мүмкін емес. .
- •3. Ньютонның заңдары. Инерциялық күштер, Серпімді күштер. Үйкеліс күштер. Бүкіл әлемдік тартылыс заңы. Космостық жылдамдықтар. Ауырлық күші және салмақ. Салмақсыздық күйі.
- •4 Термодинамиканың бірінші бастамасы.Адиабаталық процесс. Политропа теңдеуі.
- •Термодинамиканың і заңын процестерге қолдану
- •5 Өшетін және еріксіз тербелістер, олардың дифференциал теңдеулері. Еріксіз тербелістің амплитудасы мен фазасы, резонанс.
- •6.3.Өшетiн тербелiстер
- •6.4.Ерiксiз тербелiстер
- •6 Екі металл контактісі. Вольта заңдары.
- •7. Сақталу заңдары. Импульс. Импульстің сақталу заңы. Жұмыс. Куат. Кинетикалық, потенциалдық энергия. Механикалық энергияның сақталу заңы. Екі дененің соқтығысуы. Импульс моменті, оның сақталу заңы.
- •4.1 Сурет
- •8.Нақты газдар. Ван-дер-Ваальс теңдеуі және изотермалары. Нақты газдың ішкі энергиясы.
- •9. Тербелістер мен толқындар физикасы, толқындардың әр түрлі ортада таралуы. Гармоникалық осцилятор. Тербелмелі қозғалыстың энергиясы. Гармониялық тербелістерді қосу.
- •10. Жартылай өткізгіштердің электр өткізгіштігі. Жартылай өткізгішті диодтар мен транзисторлар.
- •12. Электр зарядының сақталу заңы. Электростатикалық өрістің негізгі заңы мен сипаттамалары.
- •13. Инерция моменті және күш моменті. Қатгы дененің айналмалы қозғалысының негізгі теңдеуі. Айналған қатты дененін кинетикалық энергиясы. Қатты дененің серпімді деформациялары
- •4.2 Сурет
- •1) Сызықтық зарядталған дене
- •2) Беттік зарядталған дене
- •3) Көлемдік зарядталған дене
- •15. Кирхгофтың 1-ші және 2-ші ережесі. Тармақталған тізбек мысалында түсіндіру.
- •16. Фазалық тепе-теңдік және ауысулар. Газ молекулаларының өзара әрекеттесу күштері. Ван-дер-Ваальс теңдеуі. Нақты газдың изотермасы. Нақты газдың энергиясы.
- •17. Гармоникалық тербеліс теңдеуі және энергиясы. Физикалық маятник.
- •18. Электростатик өрістегі нүктелі зарядтың кернеулігі мен потенциалы. Өріс кернеулігі пен потенциалы арасындағы байланыс.
- •1) Сызықтық зарядталған дене
- •2) Беттік зарядталған дене
- •Ағынның үздiксiздiк теңдеуi
- •20. Электростатикалық өрістегі өткізгіштер мен диэлектриктер. Диполь. Диэлектритердің поляризациялануы. Сегнетоэлектриктер.
- •22. Электростатикалық өріс сыйымдылығы. Конденсаторлар. Электр зарядтары мен конденсаторлардың әсерлесу энергиясы.
- •23. Молекулалардың жылдамдықтары бойынша үлестірілуі. Барометрлік формула. Больцман таралуы. Молекуланың еркін жүрген жолының орташа ұзындығы.
- •24. Тұрақты электр тогы, оның сипаттамалары мен токтың пайда болу шарттары. Ом заңының интерграл және дифференциал көрінісі, оны қорытып шығару.
- •Тізбектің бөлігі үшін Ом заңы
- •Дифференциал түріндегі Ом заңы
- •Осы өрнек дифференциал түріндегі Ом заңы деп аталады.
- •25. Электр тогы. Электр тогы және оның күші мен тығыздығы. Тізбек бөлігі үшін Ом заңы. Өткізгіштердің кедергісі, олардың температураға тәулділігі. Асқын өткізгіштік.
- •26. Абсолют серпімді және серпімсіз соққылар. Серпімді дене. Гук заңы.
- •27. Ток көздерінің эқк. Толық тізбек үшін Ом заңы. Тармақталған тізбек үшін Кирхгоф ережелері, Ом және Джоуль-Ленц заңдарының дифференциалдық түрі. Тұрақты электр тогы
- •Дифференциал түріндегі Ом заңы
- •Осы өрнек дифференциал түріндегі Ом заңы деп аталады.
- •Джоуль - Ленц заңы
- •28. Айналмалы қозғалыс кинематикасы.
- •29. Айналмалы қозғалыс динамикасы. Инерция моменті. Штейнер теоремасы.
- •4.2 Сурет
- •30. Тұрақты токтың қуаты. Джоуль-Ленц заңының интегралдық және дифференциалдық түрлері. Джоуль - Ленц заңы
- •31. Термодинамиканың бірінші бастамасы. Жүйенің ішкі энергиясы. Газ көлемі өзгергенде істелетін жұмыс. Идеал газдың ішкі энергиясы, жылу сыйымдылығы. Термодинамиканың бірінші заңы
- •10.1.Ішкі энергия
- •10.2.Термодинамикалық жұмыс
- •10.3.Жылу мөлшері
- •10.4.Термодинамиканың і заңын процестерге қолдану
- •32. Тармақталған тізбектер үшін Кирхгоффтың бірінші және екінші ережелері. Тізбек арқылы түсіндіру.
- •34. Еркін және еріксіз механикалық тербелістердің дифференциал көріністері және олардың шешімдері. Резонанс.
- •35. Электростатикалық өрісітегі диэлектриктер. Электростатикалық индукция векторы. Екі диэлектриктердің шекарасы. Электростатикалық өрістегі өткізгіштер. Кулон күштерінің жұмысы.
- •36. Материалдық нүктенің кинематикалық сипаттамасы.
- •37. Потенциалды энергия Потенциал. Электрлік сыйымдылық. Конденсаторлар және оларды қосу. Электр өрісінің энергиясы.
- •Электр өрісінің энергиясы
- •38. Материалдық нүктенің динамикалық сипаттамасы. Динамиканың негізгі заңдары.
- •39. Термодинамиканың екінші және үшінші бастамалары. Жылу машинасы. Жылу машинасының пайдалы әсер коэффициенті. Карно теоремасы. Карно циклы. Тоңазытқыш машина.
- •§11.Термодинамиканың екінші заңы
- •11.1.Тұйық процестер
- •11.2.Карно циклі
- •11.3.Энтропия
- •2. Дененің ішкі энергиясының есебінен шексіз жұмыс атқару мүмкін емес. .
- •40. Толқындық процесстер. Көлденең және қума толқындар. Толқын теңдеуі.
- •41. Сұйықтардағы молекулалық құбылыстар. Молекулалық қысым. Беттік керілу. Капиллярлық құбылыстар. Ерітінділер. Осмостық қысым.
- •42. Потенциалдар айырымы. Электр қозғаушы күш. Кернеу. Джоуль-Ленц заңының интрегралды және дифференциалды көрінісі, оны қорытып шығару.
- •43. Клапейрон-Клаузиус теңдеуі. Үштік нүкте. Күй диаграммасы. Фазалық ауысу. 1 және 2 шекті фазалық ауысу.
- •44. Газдардағы электр тогы. Газ разряды. Плазма.
- •45. Электростатика. Кулон заңы. Электростатикалық өрісі, оның кернеулігі. Гаусс теоремасы. Электр диполі.
- •46. Газ заңдары. Мкт-ның негізгі теңдеуі. Молекулалардың еркін жүгіру жолы. Газдардың молекула-кинетикалық теориясы
- •9.1.Молекула –кинетикалық теорияның негізгі теңдеуі
- •9.2.Газ молекуласының еркіндік дәрежесі
- •9.3.Максвелл таралуы
- •9.4.Больцман таралуы
- •47. Механикалық жұмыс, қуат және энергия. Механикадағы сақталу заңдары. Сақталу заңдары
- •3.1.Импульстiң сақталу заңы
- •3.2.Энергияның сақталу заңы
- •3.3.Импульс моментiнiң сақталу заңы
- •48. Вакуумдағы электр тогы. Термоэлектронды эмиссия.
- •49.Айналмалы қозғалыс динамикасының негізгі заңы. Импульс моментінің сақталу заңы.
- •Импульстiң сақталу заңы
- •50.Сыртқы күштердің жұмысы. Электр қозғаушы күші.
34. Еркін және еріксіз механикалық тербелістердің дифференциал көріністері және олардың шешімдері. Резонанс.
Еркін тербелістер
Біз қозғалысын қарастырып отырған денелер тобын механикада денелер жүйесі немесе жай ғана жүйе деп атайды. Жүйеге енетін денелер арасындағы әрекет ететін күштерді ішкі күштер, ал жүйеге енбейтін денелер тарапынан жүйе денелеріне әрекет ететін күштерді сыртқы күштер дейді.
Тербелістердің ең карапайым түрі — жүйе тепе-теңдік күйінен ауытқығаннан кейін ішкі күштердің әрекетінен пайда болатын тербелістер. Ондай тербелістер еркін тербелістерге жатады.
Еркін тербелістер деп дене тепе-теңдік күйінен шығарылғаннан соң сыртқы күштің әрекетінсіз болатын тербелістерді айтады. Серіппеге бекітілген жүктің не жіпке ілінген жүктің тербелістері еркін тербелістерге мысал бола алады. Алдыңғы тақырыпта алынған тербеліс периодының формулалары осы еркін тербелістерге қатысты.
Еркін тербелістердің жиілігін жүйенің меншікті тербеліс жиілігі немесе меншікті жиілік деп те атайды. Тербелістің меншікті жиілігі тербелмелі жүйенің қасиеттеріне, яғни серіппелі маятникте дененің массасы мен серіппенің қатаңдығына, ал математикалық маятникте оның ұзындығына байланысты анықталады.
Сонымен, серіппелі және математикалық маятниктер еркін тербелістер жасайды. Мұндай тербелістер табиғатта кептеп кездеседі.
Маятниктердің тербелістерімен танысқаннан кейін, бізге енді дене қандай жағдайда еркін тербелістер жасайтынын ұғыну қиын емес. Біріншіден, тербелмелі жүйеде біріне-бірі "ұқсас" күштер әрекет етуі керек. Серіппелі маятникте бұл — серпімділік күші.
Оның координаталар осіне түсірілген проекциясы (Ғх = -kx) серіппенің деформациясына, яғни дененің ығысуына пропорционал болады. Бұл күш тербелген дененің тепе-теңдік күйіне қарай бағытталған. Жіпті маятникте бұл — ауырлық күші мен серпімділік күшіне теңәрекетті күш. Оның проекциясы (Ғх = -mgx/l) да дененің ығысуына пропорционал және бұл күш те тепе-теңдік күйіне қарай бағытталған. Екіншіден, жүйедегі үйкеліс мейлінше аз болуы керек, олай болмаған жағдайда тербеліс тез өшіп қалады. Себебі үйкеліс күші қозғалысқа қарсы бағытталғандықтан, оның әрекетінен теріс жұмыс өндіріледі де, механикалық энергия азаяды. Энергияның азаюымен амплитуда кемиді. Сөйтіп, тербеліс өшеді. Өшетін тербелістерді гармоникалық тербелістер деп есептеуге болмайды, өйткені гармоникалық тербелістерде амплитуда тұрақты.
Еріксіз тербелістер
Еркін тербелістер әйтеуір бір тоқтайды. Тербелісті өшпейтін ету үшін үйкелісті жеңуге кететін энергияны толықтырып отыру қажет. Тербелмелі жүйенің энергиясын оған сыртқы периодты түрде өзгеріп отыратын күшпен әрекет ету арқылы толықтыруға болады. Жүйенің энергиясы осы сыртқы күш жұмысының есебінен толығады. Бұл жағдайда тербелістер енді еркін емес, еріксіз болады; осы тербелістерді тудырушы периодты түрде өзгеріп отыратын күш мәжбүр етуші күш деп аталады. Сонымен еріксіз тербелістер дегеніміз — сыртқы периодты күштің әрекетінен болатын тербелістер.
Периодты түрде қайталанып отыратын күштер тіпті өздері тербелмелі жүйеге жатпайтын денелердің де периодты қозғалысын тудырады. Мысал үшін есіктің периодты түрде ашылып-жабылуын немесе тігін машинасы инесінің қозғалысын еске түсірейік. Бұл кезде периодты өзгеріп отыратын күш әрекетінен болатын қозғалыстың (тербелістің) периоды сол күштің периодына тең болатынын байқау қиын емес.
Резонанс
Орныққан еріксіз тербелістердің жиілігі қашанда сыртқы күштің жиілігіне тең. Енді осы еріксіз тербелістер амплитудасының жиілікке қалай тәуелді екенін айқындайық.
Керілген жіпке екі маятник ілеміз. Мұндағы А маятнигінің ұзындығы езгермейді. Ал В маятнигінің ұзындығын жіптің бос ұшын әрлі-берлі қозғай отырып өзгертуге болады. Егер маятникті тербеліске келтірсек, онда ол керілген жіп арқылы A маятникке қайсыбір периодты күшпен әрекет етеді. Соның салдарынан енді А маятник те еріксіз тербеле бастайды.
В маятниктің ұзындығын азайта отырып, оның тербеліс жиілігін өзгертуге болады. Сөйтіп, А маятникке әрекет ететін мәжбүр етуші күштің жиілігін өзгертеміз. Сонда осы мәжбүр етуші күштің жиілігі А маятник тербелісінің меншікті жиілігіне жақындағанда (маятниктердің ұзындықтары теңелгенде), А маятниктің тербеліс амплитудасы кенет артып кететінін байқауға болады. Міне, осы мәжбүр етуші күштің тербеліс жиілігі мен тербелмелі жүйенің меншікті жиілігі дәл келген кездегі еріксіз тербелістер амплитудасының кенет арту құбылысы резонанс деп аталады.
Резонанс құбылысымен қай-қайсымыз да жиі ұшырасамыз.
Бірақ көбінесе оған мән бермейміз. Мысалы, үйдің тұсынан трамвай, трактор, пойыз, жүк машинасы, т.б. өте шыққан кезде, терезенің әйнегі дірілдеп, шыныаяқтар сылдырлайды. Өйткені сыртқы тербелістер жиілігі үйдегі денелердің меншікті жиілігімен сәйкес келеді де, соның салдарынан резонанс құбылысы пайда болады.
Резонанс пайдалы да, зиянды да болуы мүмкін. Пайдалы болған кезде оны арттыруға тырысады. Мысалы, жол құрылысында, үйдің іргетасын құйғанда, құйматасты (бетонды) немесе сусыма нәрселерді тығыздау үшін арнайы вибратор-тығыздағыштар пайдаланылады. Ал зиянды болғанда, резонансты болдырмау үшін әртүрлі шаралар қолданылады. Мысалы, электрқозғалтқыштар, бу және газ турбиналарының табаны іргетасқа бекітілген болса, олардың тербелісі біртұтас еден арқылы машина орналасқан үйге беріледі. Соның салдарынан іргетастың еріксіз тербелістерінің амплитудасы үлкен мәнге жетіп, нәтижесінде үйдің құлауы да мүмкін.
Мұндай жағдайларда тербелістердің меншікті жиілігі сыртқы күштің жиілігімен дәл келмейтіндей ету керек.
