Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Informatika.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
424.31 Кб
Скачать

1. Эквиваленция.

Эта логическая операция соответствует словам «тогда и только тогда, когда».

Определение. Эквиваленцией или эквивалентностью двух высказываний xy называется новое высказывание, которое считается истинным, если оба высказывания xлибо одновременно истинны, либо одновременно ложны, и ложным во всех остальных случаях.

Эквиваленция высказываний xобозначается символом xy и читается «для того чтобы x, необходимо и достаточно, чтобы y» или «x тогда и только тогда, когда y». Логические значения операции эквиваленции описываются следующейтаблицей истинности:

x

y

x↔y

1

1

1

1

0

0

0

1

0

0

0

1

Высказывания xназываются членами эквиваленции.

Пример.

x – «Треугольник ABC с вершиной A и основанием BC равнобедренный», y – « B= C». Эквиваленция xy – «Треугольник ABC с вершиной A и основанием BC равнобедренный тогда и только тогда, когда  B= C.» Эквиваленцияxистинна, так как высказывания x и либо одновременно истинны, либо одновременно ложны.

Эквивалентность играет важную роль в математических доказательствах. Известно, что значительное число теорем формулируется в виде необходимых и достаточных условий, то есть в форме эквивалентности. В этом случае, зная об истинности или ложности одного из двух членов эквивалентности и доказав истинность самой эквивалентности, делается вывод об истинности или ложности второго члена эквивалентности.

21. Таблицы истинности логических операций

Глоссарий, определения логики

Высказывание - это повествовательное предложение, про которое можно определенно сказать истинно оно или ложно (истина (логическая 1), ложь (логический 0)).

Логические операции - мыслительные действия, результатом которых является изменение содержания или объема понятий, а также образование новых понятий.

Логическое выражение - устное утверждение или запись, в которое, наряду с постоянными величинами, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных величин (объектов) логическое выражение может принимать одно из двух возможных значений: истина (логическая 1) или ложь (логический 0).

Сложное логическое выражение - логическое выражение, состоящее из одного или нескольких простых логических выражений (или сложных логических выражений), соединенных с помощью логических операций.

Таблица истинности — это таблица, в которой отражены все значения логической функции при всех возможных значениях, входящих в неё логически Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» (true либо false, 1 либо 0).

1) Логическое умножение или конъюнкция:

Конъюнкция - это сложное логическое выражение, которое считается истинным в том и только том случае, когда оба простых выражения являются истинными, во всех остальных случаях данное сложеное выражение ложно. Обозначение: F = A & B.

Таблица истинности для конъюнкции

A

B

a∧b

1

1

1

1

0

0

0

1

0

0

0

0

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]