- •6.Газовазные кластеры. Методы синтеза.
- •7.Детонационный синтез наночастиц
- •8.Коллоидные кластеры. Леофильные и леофобные кластеры. Методы синтеза.
- •9.Формирование нанослоёв методом Ленгмюра-Бладжет
- •10.Молекулярные кластеры. Методы синтеза.
- •11.Твердофазные материалы. Метод диспергирования, его варианты.
- •12.Твердофазныенаноматериалы. Методы синтеза.
- •13. Ионная имплантация.
- •14. Разновидности ионной имплантации. Свойства имплантированных слоев.
- •15. Газотермические методы синтеза нано и микро размерных слоев.
- •16. Газопламенный синтез.
- •17. Газовый синтез.
- •18.Электродуговой синтез.
- •19.Высокочастотный синтез.
- •20.Плазменный синтез.
- •21.Вычокочастотное плазменное нанесение нанокомпозиционных покрытий.
- •22.Детонационный синтез наноматериалов.
- •23. Основные технологии получения наноматериалов
- •24. Методы порошковой металлургии.
- •1.1 Методы получения нанопорошков
- •25.Плазмохимический синтез наноматериалов.
- •26.Формирование наноматериалов разложением нестабильных соединений.
- •27.Методы физического осаждения из паровой фазы.
- •28 Метод формования изделий из нанопорошков
- •29 Методы с использованием аморфизации
- •30 Методы с использованием технологий обработки поверхности
- •31 Методы исследования наноразмерных частиц. Общая характеристика
- •32 Электронная микроскопия. Растровая электронная микроскопия
- •33. Сканирующая зондовая микроскопия.
- •34. Атомно-силовая микроскопия.
- •35. Методы магнитно-силовой микроскопии.
- •36. Методы полевой электронной микроскопии.
- •37. Масс спектроскопия.
- •38. Наноматериалы на основе углерода. Фуллерены, фуллериты и фуллериды.
- •45.Механические свойства наноматериалов
- •46.Магнитные свойства наноматериалов.Электропроводность
- •47.Основные области применения наноматериалов.Конструкционые интрукментальные материалы триботехника защита материалов
- •48.Основные области применения наноматериалов.Нанотехнологии и медицина
- •49.Перспективы развития нанонауки
23. Основные технологии получения наноматериалов
Основные методы получения наноматериалов можно разделить на ряд технологических групп (рис. 1): методы на основе порошковой металлургии, методы, в основе которых лежит получение аморфных прекурсоров, поверхностные технологии (создание покрытий и модифицированных слоев с наноструктурой), методы, основанные на использовании интенсивной пластической деформации, и комплексные методы, использующие последовательно или параллельно несколько разных технологий.
Рис. 1. Основные методы получения наноматериалов.
24. Методы порошковой металлургии.
Данные методы можно условно подразделить на две группы – методы получения нанопорошков и методы компактирования из них изделий.
1.1 Методы получения нанопорошков
Можно выделить ряд общих подходов, которые являются характерными для всех методов получения нанопорошков и отличают их от методов получения обычных порошков:
высокая скорость образования центров зарождения частиц,
малая скорость роста частиц,
наибольший размер получаемых частиц не более 100 нм,
узкий диапазон распределения частиц по размерам,
стабильность получения частиц заданного размерного диапазона,
воспроизводимость химического и фазового состава частиц,
повышенные требования к контролю и управлению параметрами процесса получения.
Рис. 2. Основные методs получения нанопорошков
25.Плазмохимический синтез наноматериалов.
Плазмохимический синтез осуществляется с использованием низкотемпературной плазмы дугового или тлеющего разрядов (обычного, высокочастотного или сверхвысокочастотного разрядов. В качестве исходного сырья используются металлы, галогениды или другие соединения. За счет достаточно высокой температуры плазмы ( до 10000 К) и высоким скоростям взаимодействия обеспечивается переход практически всех исходных веществ в газообразное состояние и их последующим взаимодействием и конденсацией продуктов в виде нанопорошка с частицами правильной формы, имеющими размеры от 10 до 200 нм. Наиболее высокие температуры и мощность обеспечивается при использовании установок с дуговыми плазмотронами, а наиболее чистые и однородные нанопорошки получаются при использовании СВЧ-плазмотронов. При использовании активных сред, содержащих углерод, азот, бор или кислород плазмохимическим синтезом получают нанопорошки карбидов, нитридов, боридов и оксидов разных элементов, а также многокомпонентные соединения. При использовании восстановительных сред возможно получение порошков тугоплавких металлов из оксидов (рис. 3). В качестве источника создания и поддержания плазмы нагревом может использоваться и лазерный нагрев. Таким способом получают нанопорошки фуллеренов.
