- •6.Газовазные кластеры. Методы синтеза.
- •7.Детонационный синтез наночастиц
- •8.Коллоидные кластеры. Леофильные и леофобные кластеры. Методы синтеза.
- •9.Формирование нанослоёв методом Ленгмюра-Бладжет
- •10.Молекулярные кластеры. Методы синтеза.
- •11.Твердофазные материалы. Метод диспергирования, его варианты.
- •12.Твердофазныенаноматериалы. Методы синтеза.
- •13. Ионная имплантация.
- •14. Разновидности ионной имплантации. Свойства имплантированных слоев.
- •15. Газотермические методы синтеза нано и микро размерных слоев.
- •16. Газопламенный синтез.
- •17. Газовый синтез.
- •18.Электродуговой синтез.
- •19.Высокочастотный синтез.
- •20.Плазменный синтез.
- •21.Вычокочастотное плазменное нанесение нанокомпозиционных покрытий.
- •22.Детонационный синтез наноматериалов.
- •23. Основные технологии получения наноматериалов
- •24. Методы порошковой металлургии.
- •1.1 Методы получения нанопорошков
- •25.Плазмохимический синтез наноматериалов.
- •26.Формирование наноматериалов разложением нестабильных соединений.
- •27.Методы физического осаждения из паровой фазы.
- •28 Метод формования изделий из нанопорошков
- •29 Методы с использованием аморфизации
- •30 Методы с использованием технологий обработки поверхности
- •31 Методы исследования наноразмерных частиц. Общая характеристика
- •32 Электронная микроскопия. Растровая электронная микроскопия
- •33. Сканирующая зондовая микроскопия.
- •34. Атомно-силовая микроскопия.
- •35. Методы магнитно-силовой микроскопии.
- •36. Методы полевой электронной микроскопии.
- •37. Масс спектроскопия.
- •38. Наноматериалы на основе углерода. Фуллерены, фуллериты и фуллериды.
- •45.Механические свойства наноматериалов
- •46.Магнитные свойства наноматериалов.Электропроводность
- •47.Основные области применения наноматериалов.Конструкционые интрукментальные материалы триботехника защита материалов
- •48.Основные области применения наноматериалов.Нанотехнологии и медицина
- •49.Перспективы развития нанонауки
29 Методы с использованием аморфизации
Аморфные металлические сплавы являются новым перспективным классом материалов. Аморфное состояние сплава характеризуется отсутствием дальнего порядка в расположении атомов упаковки. Такое состояние достигается сверхбыстрым охлаждением материала из газообразного, жидкого или ионизированного состояния. Существуют следующие методы полученя аморфных сплавов :
- высокоскоростное ионно-плазменное и термическое напыление материала на охлаждаемую жидким азотом подложку (позволяет получать слои толщиной до 5 мм);
- химическое или электролитическое осаждение ионов металлов на подложку;
- оплавление тонких поверхностных слоев деталей лазерным лучом;
- Лазерная обработка смеси порошков при быстром отводе тпла от расплава;
- закалка из жидкого состояния.
Последний метод в настоящее время наиболее отработан и исследован и является основным методом получения аморфных сплавов. Производство лент, фольг и проволок (толщиной до 100 мкм и шириной до 200 мм) проводится по схеме подачи струю жидкого металла на вращающийся водоохлаждаемый барабан (как правило медный) с гладкой поверхностью (рис. 4.12.). Иногда используют также схему извлечения жидкого металла из ванны расплава быстро вращающимся водоохлаждаемым диском, погруженным вертикально торцом в расплав. Еще один способ заключается в расплавлении сплава токами высокой частоты, вытягивании и быстром охлаждении аморфной нити толщиной до 200 мкм жидкой средой . В случае нанесения на нить перед охлаждением стеклообразного покрытия способ используют для получения стеклометаллических аморфных композиционных материалов.
Возможность получения аморфного состояния определяется химическим составом и скоростью охлаждения. Последняя обычно составляет 105-1010 оС/с . С точки зрения выбора химического состава сплава существуют два подхода.
Аморфное состояние сплавов является метастабильным, поэтому после аморфизации часто проводят отжиг, в процессе которого частично происходит переход к более стабильному состоянию .
В ряде случаев для получения аморфного состояния проводят предварительную обработку (например высокоскоростную закалку) заготовок, а такие заготовки часто называют «прекурсорами».
30 Методы с использованием технологий обработки поверхности
Технологии обработки поверхности материалов к настоящему времени представляют собой одну из наиболее развивающихся областей науки о материалах. Методы, связанные с созданием на поверхности материалов, особенно металлических, модифицированных слоев, достаточно изучены, отработаны и широко применяются на практике [74,94-101]. Многие из таких методов или их усовершенствованных вариантов могут рассматриваться как методы нанотехнологии, так как позволяют создавать наноразмерные и/или наноструктурные слои на поверхности материалов, композиционные материалы с нанокомпонентами, а в ряде случаев и наноматериалы в виде нано и микроизделий.
Данные методы можно условно подразделить на две большие группы – технологии,
основанные на физических процессах и технологии, основанные на химических процессах. Среди всех наноориентированных технологий обработки поверхности на сегодняшний день наиболее перспективными являются ионно-вакуумные технологии нанесения покрытий (т.н. PVD и CVD технологии) . Полученные такими способами слои отличаются высокой адгезией, а температурное воздействие на материал основы как правило минимальное. Анализ литературных данных, показал, что размер кристаллитов в пленках, полученных по технологиям вакуумного нанесения, может достигать 1-3 нм.
