- •1)Множества. Операции над множествами.
- •2) Действительные числа и числовая ось.
- •3) Числовые промежутки. Окрестность точки.
- •4) Числовые функции. График функции. Способы задания функций
- •5) Основные характеристики функции (монотонность, четность-нечетность, периодичность).
- •6) Обратная функция, сложная функция .
- •13)Предел функции. Определения. Основные теоремы о пределах.
- •14) Бесконечно большая функция (б.Б.В.). Бесконечно малые функции (б.М.В.). Основные теоремы
- •15)Первый замечательный предел. Второй замечательный предел.
- •16)Эквивалентные бесконечно малые функции. Таблица эквивалентных величин.
- •18)Точки разрыва функции I-го рода.
- •19)Точки разрыва функции II-го рода.
- •20 )Основные теоремы о непрерывных функциях. Непрерывность элементарных функций.
- •21)Производная функции. Определение производной; ее механический и геометрический смысл.
- •22)Уравнение касательной и нормали к кривой.
- •23)Связь между непрерывностью и дифференцируемостью функции .
- •24)Производная суммы, разности, произведения и частного функций .
- •25) Производная сложной и обратной функций.
- •26)Дифференцирование неявных и параметрически заданных функций.
- •27) Производные основных элементарных функций.
- •28)Производные высших порядков.
- •29) Дифференциал функции.
- •30) Понятие дифференциала функции.
- •31) Основные теоремы о дифференциалах.
- •32) Таблица дифференциалов.
- •33) Применение дифференциала к приближенным вычислениям.
- •34) Дифференциалы высших порядков.
- •35) Некоторые теоремы о дифференцируемых функциях.
- •36) Правила Лопиталя.
- •37)Связь между дифференцируемостью и монотонностью функции.
- •38) Экстремумы функции. Определение. Необходимое условие существования экстремума.
- •39)Первое и второе достаточные условия существования экстремума.
- •40) Наибольшее и наименьшее значения функции на отрезке.
- •41)Выпуклость графика функции. Связь с производной второго порядка.
- •42) Точки перегиба. Необходимое условие существования точки перегиба.
- •43) Достаточное условие существования точки перегиба.
- •44) Асимптоты графика функции.
- •45) Общая схема исследования функции и построения графика.
- •46) Понятие неопределенного интеграла.
- •47) Свойства неопределенного интеграла.
- •48) Таблица основных неопределенных интегралов.
- •49) Основные методы интегрирования (метод интегрирования подстановкой.
- •50) Основные методы интегрирования (метод интегрирования по частям.
- •51) Простейшие дроби 4 типов.
- •52) Интегрирование рациональных функций.
- •53) Интегрирование тригонометрических функций. Универсальная подстановка.
- •54) Интегрирование простейших иррациональных функций.
- •55) Определенный интеграл как предел интегральной суммы.
- •56)Теорема существования определенного интеграла.
- •57)Геометрический смысл определенного интеграла.
- •58)Основные свойства определенного интеграла.
- •59)Оценка опр. Интеграла. Теорема о среднем.
- •60) Вычисления определенного интеграла. Формула Ньютона-Лейбница.
- •61)Интегрирование подстановкой (заменой переменной) в опред.Интеграле.
- •62)Интегрирование по частям в опред.Интеграле.
- •63) Несобственные интегралы. Интеграл с бесконечным промежутком интегрирования (несобственный интеграл 1 рода).
- •64)Несобственный интеграл. Интеграл от разрывной функции (несобственный интеграл 2рода)
- •65) Приложение определенного интеграла. Вычисление площадей плоских фигур.
- •67) Приложение определенного интеграла. Вычисление объема тела.
- •68) Функции нескольких (двух) переменных. Основные понятия
- •69)Предел функции двух переменных
- •71) Производные и дифференциалы функции нескольких переменных.
- •72) Применение дифференциала функции нескольких(двух) переменных к приближенным вычислениям
- •73)Частные производные первого порядка
- •74) Производная по направлению. Градиент.
- •75)Экстремум функции двух переменных. Основные понятия
- •76) Условный экстремум. Метод множителей Лагранжа.
- •77) Числовые ряды. Основные понятия. Сходимость ряда.
- •78) Необходимый признак сходимости. Гармонический ряд.
- •79) Ряды с положительными членами.
- •80) Достаточные признаки сходимости рядов с положительными членами.
- •81) Знакочередующиеся ряды. Абсолютная и условная сходимости.
- •82) Признак Лейбница.
- •83) Степенные ряды. Область сходимости степенного ряда.
- •84) Теорема Абеля. Интервал и радиус сходимости.
- •85) Ряды Тейлора и Маклорена.
- •87) Разложение в ряд Маклорена функций ex , sin X.
- •88) Применение рядов в приближенных вычислениях.
- •89) Двойные интегралы. Основные понятия и определения.
- •90)Основные свойства двойного интеграла.
- •91)Основные свойства двойного интеграла.
- •92) Вычисление двойного интеграла в декартовых координатах.
- •93) Приложения двойного интеграла.
- •94) Дифференциальные уравнения. Основные понятия.
- •95) Дифференциальные уравнения первого порядка. Теорема о существовании и единственности решения.
- •96) Дифференциальные уравнения с разделяющимися переменными.
- •97) Однородные дифференциальные уравнения первого порядка.
- •98) Линейные дифференциальные уравнения первого порядка.
- •99) Дифференциальные уравнения второго порядка, допускающие понижение порядка.
- •100) Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
96) Дифференциальные уравнения с разделяющимися переменными.
В
дифференциальных уравнениях
или
переменные
могут быть разделены, проведением
преобразований. Такие ОДУ
называются дифференциальными
уравнениями с разделяющимися переменными.
Соответствующее ДУ с разделенными
переменными запишется как
.
Как видим, левая часть уравнения зависит только от x, а правая только от y, то есть переменные разделены.
Левая часть полученного уравнения - дифференциал некоторой функции переменной x, а правая часть - дифференциал некоторой функции переменной y. Для получения решения исходного дифференциального уравнения следует интегрировать обе части уравнения. При этом при разделении переменных не обязательно переносить один его член в правую часть, можно почленно интегрировать без такого переноса.
97) Однородные дифференциальные уравнения первого порядка.
Определение
1. Функция
двух переменных
называется однородной,
если в результате тождественных
преобразований её можно свести к
некоторой функции одной переменной
,
то есть, выполнено равенство:
.
Определение
2. Дифференциальное
уравнение вида
,
где функция
однородная
функция двух переменных называется однородным
дифференциальным уравнением первого
порядка:
.
Пусть
,
,
−
эта подстановка приводит к решению
однородного дифференциального уравнения.
,
,
,
,
.
98) Линейные дифференциальные уравнения первого порядка.
Линейным дифференциальным уравнением первого порядка называется уравнение вида
,
(1)
линейное относительно
неизвестной функции
и
ее производной. Если
в уравнении (1) правая часть
,
то уравнение
(2)
называется линейным однородным уравнением, которое является уравнением с разделяющимися переменными.
Удобным
способом решения линейных уравнений
является метод
Бернулли. Пусть
дано уравнение (1). Решение этого уравнения
будем искать в виде произведения двух
функций:
,
где
,
.
Подставим решение в исходное уравнение
(3.6):
,
,
.
Найдем
такую функцию
,
которая бы являлась решением
дифференциального уравнения
.
Тогда решение уравнения (1) будет сведено к решению системы уравнений с разделяющимися переменными
(7)
Заметим, что при решении первого уравнения системы достаточно указать любое частное решение, то есть выбор константы произволен.
99) Дифференциальные уравнения второго порядка, допускающие понижение порядка.
В общем случае дифференциальное уравнение второго порядка можно записать в виде
F(x,y,y′,y′′)=0,
где F − заданная функция указанных аргументов. Если дифференциальное уравнение можно разрешить относительно второй производной y′′, то его можно представить в следующем явном виде:
y′′=f(x,y,y′).
В частных случаях функция f в правой части может содержать лишь одну или две переменных. Такие неполные уравнения включают в себя 5 различных типов:
y′′=f(x),y′′=f(y),y′′=f(y′),y′′=f(x,y′),y′′=f(y,y′).
С помощью определенных подстановок эти уравнения можно преобразовать в уравнения первого порядка.
