- •1)Множества. Операции над множествами.
- •2) Действительные числа и числовая ось.
- •3) Числовые промежутки. Окрестность точки.
- •4) Числовые функции. График функции. Способы задания функций
- •5) Основные характеристики функции (монотонность, четность-нечетность, периодичность).
- •6) Обратная функция, сложная функция .
- •13)Предел функции. Определения. Основные теоремы о пределах.
- •14) Бесконечно большая функция (б.Б.В.). Бесконечно малые функции (б.М.В.). Основные теоремы
- •15)Первый замечательный предел. Второй замечательный предел.
- •16)Эквивалентные бесконечно малые функции. Таблица эквивалентных величин.
- •18)Точки разрыва функции I-го рода.
- •19)Точки разрыва функции II-го рода.
- •20 )Основные теоремы о непрерывных функциях. Непрерывность элементарных функций.
- •21)Производная функции. Определение производной; ее механический и геометрический смысл.
- •22)Уравнение касательной и нормали к кривой.
- •23)Связь между непрерывностью и дифференцируемостью функции .
- •24)Производная суммы, разности, произведения и частного функций .
- •25) Производная сложной и обратной функций.
- •26)Дифференцирование неявных и параметрически заданных функций.
- •27) Производные основных элементарных функций.
- •28)Производные высших порядков.
- •29) Дифференциал функции.
- •30) Понятие дифференциала функции.
- •31) Основные теоремы о дифференциалах.
- •32) Таблица дифференциалов.
- •33) Применение дифференциала к приближенным вычислениям.
- •34) Дифференциалы высших порядков.
- •35) Некоторые теоремы о дифференцируемых функциях.
- •36) Правила Лопиталя.
- •37)Связь между дифференцируемостью и монотонностью функции.
- •38) Экстремумы функции. Определение. Необходимое условие существования экстремума.
- •39)Первое и второе достаточные условия существования экстремума.
- •40) Наибольшее и наименьшее значения функции на отрезке.
- •41)Выпуклость графика функции. Связь с производной второго порядка.
- •42) Точки перегиба. Необходимое условие существования точки перегиба.
- •43) Достаточное условие существования точки перегиба.
- •44) Асимптоты графика функции.
- •45) Общая схема исследования функции и построения графика.
- •46) Понятие неопределенного интеграла.
- •47) Свойства неопределенного интеграла.
- •48) Таблица основных неопределенных интегралов.
- •49) Основные методы интегрирования (метод интегрирования подстановкой.
- •50) Основные методы интегрирования (метод интегрирования по частям.
- •51) Простейшие дроби 4 типов.
- •52) Интегрирование рациональных функций.
- •53) Интегрирование тригонометрических функций. Универсальная подстановка.
- •54) Интегрирование простейших иррациональных функций.
- •55) Определенный интеграл как предел интегральной суммы.
- •56)Теорема существования определенного интеграла.
- •57)Геометрический смысл определенного интеграла.
- •58)Основные свойства определенного интеграла.
- •59)Оценка опр. Интеграла. Теорема о среднем.
- •60) Вычисления определенного интеграла. Формула Ньютона-Лейбница.
- •61)Интегрирование подстановкой (заменой переменной) в опред.Интеграле.
- •62)Интегрирование по частям в опред.Интеграле.
- •63) Несобственные интегралы. Интеграл с бесконечным промежутком интегрирования (несобственный интеграл 1 рода).
- •64)Несобственный интеграл. Интеграл от разрывной функции (несобственный интеграл 2рода)
- •65) Приложение определенного интеграла. Вычисление площадей плоских фигур.
- •67) Приложение определенного интеграла. Вычисление объема тела.
- •68) Функции нескольких (двух) переменных. Основные понятия
- •69)Предел функции двух переменных
- •71) Производные и дифференциалы функции нескольких переменных.
- •72) Применение дифференциала функции нескольких(двух) переменных к приближенным вычислениям
- •73)Частные производные первого порядка
- •74) Производная по направлению. Градиент.
- •75)Экстремум функции двух переменных. Основные понятия
- •76) Условный экстремум. Метод множителей Лагранжа.
- •77) Числовые ряды. Основные понятия. Сходимость ряда.
- •78) Необходимый признак сходимости. Гармонический ряд.
- •79) Ряды с положительными членами.
- •80) Достаточные признаки сходимости рядов с положительными членами.
- •81) Знакочередующиеся ряды. Абсолютная и условная сходимости.
- •82) Признак Лейбница.
- •83) Степенные ряды. Область сходимости степенного ряда.
- •84) Теорема Абеля. Интервал и радиус сходимости.
- •85) Ряды Тейлора и Маклорена.
- •87) Разложение в ряд Маклорена функций ex , sin X.
- •88) Применение рядов в приближенных вычислениях.
- •89) Двойные интегралы. Основные понятия и определения.
- •90)Основные свойства двойного интеграла.
- •91)Основные свойства двойного интеграла.
- •92) Вычисление двойного интеграла в декартовых координатах.
- •93) Приложения двойного интеграла.
- •94) Дифференциальные уравнения. Основные понятия.
- •95) Дифференциальные уравнения первого порядка. Теорема о существовании и единственности решения.
- •96) Дифференциальные уравнения с разделяющимися переменными.
- •97) Однородные дифференциальные уравнения первого порядка.
- •98) Линейные дифференциальные уравнения первого порядка.
- •99) Дифференциальные уравнения второго порядка, допускающие понижение порядка.
- •100) Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
67) Приложение определенного интеграла. Вычисление объема тела.
В общем случае, простого определенного интеграла не достаточно, чтобы вычислить объем тела, и для этого используются кратные интегралы. Лишь в некоторых частных случаях для вычисления объема используется простой интеграл.
Самый простой случай – вычисление объема при известной площади сечения. Пусть дано какое-то объемное тело. Если площадь сечения задается функцией S(x), тогда объем этого тела, заключенный между плоскостями x = a и x = b вычисляется с помощью интеграла:
Частным случаем вычисления объема при известной площади сечения является вычисление объема тела вращения. Если некоторая кривая f(x) вращается вокруг оси x, тогда площадь сечения плоскостью x = u данного тела вращения равна площади круга с радиусомf(u), т.е. равна p f 2(u). В результате объем тела вращения, получаемого при вращении f(x) вокруг оси x, и ограниченного плоскостямиx = a и x = b равен :
68) Функции нескольких (двух) переменных. Основные понятия
Определение
1. Закон
(правило) по которому каждой
паре
независимых
переменных ставится в соответствие
определенное значение
называется функцией
двух переменных.
Например, площадь прямоугольника представляет собой функцию двух переменных.
Замечание. Если
паре значений
соответствует
одно значение
,
то функция называется однозначной. В
остальных случаях – многозначной.
Определение
2. Пусть
имеется n различных
переменных величин, и каждому набору
их значений (
соответствует
определенное значение переменной
величины
.
Тогда говорят, что задана функция
нескольких переменных
.
Например, объем параллелепипеда – функция трех переменных.
Переменные
называются независимыми
переменными,
или аргументами, z
– зависимой переменной,
а символ f означает
закон соответствия. Множество X называется областью
определения функции.
Определение
3.Совокупность
пар
значений x и y, при
которых функция
имеет
смысл, называется областью
определения функции.
Определение
4. Графиком
функции двух переменных
называется
множество точек трехмерного
пространства
аппликата z которых
связана с абсциссой x и
ординатой y функциональным
соотношением
.
69)Предел функции двух переменных
Для
функции двух (и большего числа) переменных
вводится понятие предела функции ,
аналогично случаю функции одной
переменной. Введем понятие окрестности
точки. Множество всех точек М(х;у)
плоскости, координаты которых
удовлетворяют неравенству
называется d-окрестностью
точки М0(х0;у0).
Другими словами, d-окрестность точки
Мо —
это все внутренние точки круга с центром
Мо и
радиусом 8 (см. рис. 206).
Пусть функция z = ƒ(х; у) определена в некоторой окрестности точки М0(х0;у0), кроме, быть может, самой этой точки. Число А называется пределом функции z = ƒ (х; у) при х → х0 и у → у0 (или, что то же самое, при М(х; у) → М0(х0; у0)), если для любого є > 0 существует d > 0 такое, что для всех х ≠ х0 и у ≠ у0 и удовлетворяющих неравенству
выполняется
неравенство | ƒ (х; у) — А| < є. Записывают:
70) Непрерывность функции двух переменных.
Функция z = ƒ(х;у) (или ƒ(М)) называется непрерывной в точке М0(х0;у0), если она:
а) определена в этой точке и некоторой ее окрестности,
б) имеет предел
в)
этот предел равен
значению
функции z в точке Мо, т.
е.
Функция, непрерывная в каждой точке некоторой области, называется непрерывной в этой области. Точки, в которых непрерывность нарушается (не выполняется хотя бы одно из условий непрерывности функции в точке), называются точками разрыва этой функции.
