- •1)Множества. Операции над множествами.
- •2) Действительные числа и числовая ось.
- •3) Числовые промежутки. Окрестность точки.
- •4) Числовые функции. График функции. Способы задания функций
- •5) Основные характеристики функции (монотонность, четность-нечетность, периодичность).
- •6) Обратная функция, сложная функция .
- •13)Предел функции. Определения. Основные теоремы о пределах.
- •14) Бесконечно большая функция (б.Б.В.). Бесконечно малые функции (б.М.В.). Основные теоремы
- •15)Первый замечательный предел. Второй замечательный предел.
- •16)Эквивалентные бесконечно малые функции. Таблица эквивалентных величин.
- •18)Точки разрыва функции I-го рода.
- •19)Точки разрыва функции II-го рода.
- •20 )Основные теоремы о непрерывных функциях. Непрерывность элементарных функций.
- •21)Производная функции. Определение производной; ее механический и геометрический смысл.
- •22)Уравнение касательной и нормали к кривой.
- •23)Связь между непрерывностью и дифференцируемостью функции .
- •24)Производная суммы, разности, произведения и частного функций .
- •25) Производная сложной и обратной функций.
- •26)Дифференцирование неявных и параметрически заданных функций.
- •27) Производные основных элементарных функций.
- •28)Производные высших порядков.
- •29) Дифференциал функции.
- •30) Понятие дифференциала функции.
- •31) Основные теоремы о дифференциалах.
- •32) Таблица дифференциалов.
- •33) Применение дифференциала к приближенным вычислениям.
- •34) Дифференциалы высших порядков.
- •35) Некоторые теоремы о дифференцируемых функциях.
- •36) Правила Лопиталя.
- •37)Связь между дифференцируемостью и монотонностью функции.
- •38) Экстремумы функции. Определение. Необходимое условие существования экстремума.
- •39)Первое и второе достаточные условия существования экстремума.
- •40) Наибольшее и наименьшее значения функции на отрезке.
- •41)Выпуклость графика функции. Связь с производной второго порядка.
- •42) Точки перегиба. Необходимое условие существования точки перегиба.
- •43) Достаточное условие существования точки перегиба.
- •44) Асимптоты графика функции.
- •45) Общая схема исследования функции и построения графика.
- •46) Понятие неопределенного интеграла.
- •47) Свойства неопределенного интеграла.
- •48) Таблица основных неопределенных интегралов.
- •49) Основные методы интегрирования (метод интегрирования подстановкой.
- •50) Основные методы интегрирования (метод интегрирования по частям.
- •51) Простейшие дроби 4 типов.
- •52) Интегрирование рациональных функций.
- •53) Интегрирование тригонометрических функций. Универсальная подстановка.
- •54) Интегрирование простейших иррациональных функций.
- •55) Определенный интеграл как предел интегральной суммы.
- •56)Теорема существования определенного интеграла.
- •57)Геометрический смысл определенного интеграла.
- •58)Основные свойства определенного интеграла.
- •59)Оценка опр. Интеграла. Теорема о среднем.
- •60) Вычисления определенного интеграла. Формула Ньютона-Лейбница.
- •61)Интегрирование подстановкой (заменой переменной) в опред.Интеграле.
- •62)Интегрирование по частям в опред.Интеграле.
- •63) Несобственные интегралы. Интеграл с бесконечным промежутком интегрирования (несобственный интеграл 1 рода).
- •64)Несобственный интеграл. Интеграл от разрывной функции (несобственный интеграл 2рода)
- •65) Приложение определенного интеграла. Вычисление площадей плоских фигур.
- •67) Приложение определенного интеграла. Вычисление объема тела.
- •68) Функции нескольких (двух) переменных. Основные понятия
- •69)Предел функции двух переменных
- •71) Производные и дифференциалы функции нескольких переменных.
- •72) Применение дифференциала функции нескольких(двух) переменных к приближенным вычислениям
- •73)Частные производные первого порядка
- •74) Производная по направлению. Градиент.
- •75)Экстремум функции двух переменных. Основные понятия
- •76) Условный экстремум. Метод множителей Лагранжа.
- •77) Числовые ряды. Основные понятия. Сходимость ряда.
- •78) Необходимый признак сходимости. Гармонический ряд.
- •79) Ряды с положительными членами.
- •80) Достаточные признаки сходимости рядов с положительными членами.
- •81) Знакочередующиеся ряды. Абсолютная и условная сходимости.
- •82) Признак Лейбница.
- •83) Степенные ряды. Область сходимости степенного ряда.
- •84) Теорема Абеля. Интервал и радиус сходимости.
- •85) Ряды Тейлора и Маклорена.
- •87) Разложение в ряд Маклорена функций ex , sin X.
- •88) Применение рядов в приближенных вычислениях.
- •89) Двойные интегралы. Основные понятия и определения.
- •90)Основные свойства двойного интеграла.
- •91)Основные свойства двойного интеграла.
- •92) Вычисление двойного интеграла в декартовых координатах.
- •93) Приложения двойного интеграла.
- •94) Дифференциальные уравнения. Основные понятия.
- •95) Дифференциальные уравнения первого порядка. Теорема о существовании и единственности решения.
- •96) Дифференциальные уравнения с разделяющимися переменными.
- •97) Однородные дифференциальные уравнения первого порядка.
- •98) Линейные дифференциальные уравнения первого порядка.
- •99) Дифференциальные уравнения второго порядка, допускающие понижение порядка.
- •100) Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
1)Множества. Операции над множествами.
Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п. Множества обозначаются большими латинскими буквами A, B, C , а элементы множества маленькими латинскими буквами a, b, c. Элементы множеств заключаются в фигурные скобки. Если элемент x принадлежит множеству X, то записывают x ∈ Х (∈ — принадлежит). Если множество А является частью множества В, то записывают А ⊂ В (⊂ — содержится).
Операции над множествами:
Два множества А и В равны (А=В), если они состоят из одних и тех же элементов. Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.
Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств. Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}
Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В. Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}
Разностью множеств А и В называется множество АВ, элементы которого принадлежат множеству А, но не принадлежат множеству В. Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}
Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть АΔВ=(АВ)∪(ВА). Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}
Свойства перестановочности
A∪B=B∪A A ∩ B = B ∩ A
Сочетательное свойство
(A∪B)∪C=A∪(B∪C) (A ∩ B) ∩ C = A ∩ (B ∩ C)
2) Действительные числа и числовая ось.
Действительные
(вещественные) числа
представляют собой совокупность всех
рациональных и иррациональных чисел.
Множество вещественных чисел обозначается
.
Иначе
говоря, действительные числа - это
бесконечные (периодические и
непериодические) десятичные дроби.
Рациональное число – число, представляемое обыкновенной дробью m/n, где числитель m – целое число, а знаменатель n – натуральное число. Любое рациональное число представимо в виде периодической бесконечной десятичной дроби. Множество рациональных чисел обозначается Q.
Если действительное число не является рациональным, то оно иррациональное число. Десятичные дроби, выражающие иррациональные числа бесконечны и не периодичны. Множество иррациональных чисел обычно обозначается заглавной латинской буквой I.
Числовая ось – прямая, на которой изображаются действительные числа. Для превращения обычной прямой в числовую ось необходимы:
некоторая точка O — начало отсчёта;
положительное направление, указанное стрелкой;
масштаб для измерения длин.
3) Числовые промежутки. Окрестность точки.
Числовые отрезки, интервалы, полуинтервалы и лучи называют числовыми промежутками.
Неравенство, задающее числовой промежуток |
Обозначение числового промежутка |
Название числового промежутка |
a ≤ x ≤ b |
[a; b] |
Числовой отрезок |
a < x < b |
(a; b) |
Интервал |
a ≤ x < b |
[a; b) |
Полуинтервал |
a < x ≤ b |
(a; b]
|
Полуинтервал |
x ≥ a |
[a; + ∞) |
Числовой луч |
x > a |
(a; + ∞) |
Открытый числовой луч |
x ≤ a |
(- ∞; a] |
Числовой луч |
x < a |
(- ∞; a) |
Открытый числовой луч |
Пусть
х0
-
любое действительное число (точка на
числовой прямой). Окрестностью
точки х0
называется
любой интервал (a; b), содержащий точку
х0,
интервал
симметричный
относительно
называется е-окрестностью точки х0 (рис. 1.1).
