- •1. Качественные особенности живой материи. Уровни организации живого
- •2. Структурное нарушение хромосом . Классификация хромосомных мутаций
- •Классификация хромосомных мутаций
- •3. Прокариоты и Эукариоты
- •Свойства генетического кода
- •6. Основные структурные компоненты эукариотической клетки
- •7.Наследственные болезни человека
- •Причины появления наследственных заболеваний
- •Виды наследственных заболеваний
- •Профилактика наследственных заболеваний
- •8.Химимческий состав клетки
- •9. Простейшие- возбудители болезней человека
- •10.Наследование группы крови. Наследование резус фактора
- •11.Жизенный цикл дизентерийной амебу
- •12.Биосинтез белка
- •13.Цикл развития малярийного плазмодия
- •14.Строение и функции днк
- •15.Цикл развития аскариды
- •16.Митотический цикл клетки. Митоз , его биологическое значение.
- •17.Аллельные гены, определение и формы взаимодействия.
- •18. Модификационная изменчивость , норма реауции.
- •19. Мейоз.
- •20.Кариотип, кариограмма , идеограмма человека. Хар-ка кариотипа человека в норме.
- •21 Третий закон Менделя, или Закон независимого наследования при дигибридном (полигибридном) скрещивании
- •23 Первый закон Менделя, или Правило единообразия
- •24 Цикл развития печеночного сосальщика.
- •25. Типы взаимодействия неаллельных генов
- •26. Приспособления к паразитизму у плоских червей.
- •27. Анализирующее скрещивание
- •28. Комбинативная изменчивость
- •29. Хромосомный механизм определения пола
- •30. Обмен веществ и превращение энергии в клетке
- •31. Закон сцепления гласит: сцепленные гены, расположеные в одной хромосоме, наследуются совместно (сцепленно).
- •32. Методы диагностики наследственных болезней
- •32. Методы диагностики наследственных болезней.
- •33. Генные мутации, их типы, механизм возникновения.
- •34. Понятие об аллельности, гомозиготности , гетерозиготности. Примеры.
- •Кодоминирование
- •36. Трипоносома возбудитель сонной болезни.
- •37. Промежуточный характер наследования. Примеры
- •38. Трихинелла возбудитель трихинеллеза человека.
- •Источники трихинеллеза
- •Пути заражения трихинеллезом
- •Формы существования возбудителей трихинеллеза
- •40. Сперматогенез и овогенез.
- •41. Цитологическое обоснование закона независимого наследования признаков. Первый закон Менделя, или Правило единообразия
- •42. Методы изучения наследственности человека.
- •43. Мутации – генные , хромосомные, геномные. Генные (точковые) мутации
- •Геномные мутации
- •44. Формы размножения организмов.
- •45.Половой хроматин , хромосомные болезни пола. Причины их возникновения , примеры.
- •46. Эпистатическое взаимодействие неаллельных генов.
- •46. Эпистатическое взаимодействие неаллельных генов.
- •47.Половое размножение.Типы.Оплодотворение.
- •48.Комплементарное взаимодействие неаллельных генов.
- •49.Множественный аллелизм на примере кроликов.
- •50.Паразитическое животное возбудители болезней человека.
- •51.Спонтанные и индуцированные мутации.Их биологическая роль.Факторы мутагенеза.Антимутагенез.
- •52.Цикл развития малярийного плазмодия.
- •53.Аутосомно-доминантный и аутосомно-рецессивный тип наследования.Моделирующие признаки у человека.Примеры.
- •54.Строение и функции днк.
- •55.Понятие вида,современные взгляды на видообразования.Популяция и её экологическая характеристика.
- •56.Сперматогенез и овогенез.
- •57.Процессы микроэволюции и макроэволюции.Движущие силы этих поцессов.
- •59.Элементарные факторы эволюции и их действие.
- •60.Сперматогенез и овогенез.
- •61.Современные концепции биосферы.Учения в.И.Вернадского о биосфере.
- •62.Членистоногие возбудители и переносчики заболеваний человека.
33. Генные мутации, их типы, механизм возникновения.
Генные мутации
Внезапные спонтанные изменения фенотипа, которые нельзя связать с обычными генетическими явлениями или микроскопическими данными о наличии хромосомных аберраций, можно объяснить только изменениями в структуре отдельных генов. Генная, или точечная (поскольку она относится к определенному генному локусу), мутация - результат изменения нуклеотидной последовательности молекулы ДНК в определенном участке хромосомы. Такое изменение последовательности оснований в данном гене воспроизводится при транскрипции в структуре мРНК и приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся в результате трансляции на рибосомах. Существуют различные типы генных мутаций, связанных с добавлением, выпадением или перестановкой оснований в гене. Это дупликации, вставки, делении, инверсии или замены оснований. Во всех случаях они приводят к изменению нуклеотидной последовательности, а часто - и к образованию измененного полипептида. Например, делеция вызывает сдвиг рамки. Генные мутации, возникающие в гаметах или в будущих половых клетках, передаются всем клеткам потомков и могут влиять на дальнейшую судьбу популяции. Соматические генные мутации, происходящие в организме, наследуются только теми клетками, которые образуются из мутантной клетки путем митоза. Они могут оказать воздействие на тот организм, в котором они возникли, но со смертью особи исчезают из генофонда популяции. Соматические мутации, вероятно, возникают очень часто и остаются незамеченными, но в некоторых случаях при этом образуются клетки с повышенной скоростью роста и деления. Эти клетки могут дать начало опухолям - либо доброкачественным, которые не оказывают особого влияния на весь организм, либо злокачественным, что приводит к раковым заболеваниям. Эффекты генных мутаций чрезвычайно разнообразны. Большая часть мелких генных мутаций фенотипически не проявляется, поскольку они рецессивны, однако известен ряд случаев, когда изменение всего лишь одного основания в определенном гене оказывает глубокое влияние на фенотип. Одним из примеров служит серповидноклеточная анемия - заболевание, вызываемое у человека заменой основания в одном из генов, ответственных за синтез гемоглобина. Молекула дыхательного пигмента гемоглобина у взрослого человека состоит из четырех полипептидных цепей (двух (и двух (цепей), к которым присоединены четыре простетические группы гема.
От структуры полипептидных цепей зависит способность молекулы гемоглобина переносить кислород. Изменение последовательности оснований в триплете, кодирующем одну определенную аминокислоту из 146, входящих в состав (-цепей, приводит к синтезу аномального гемоглобина серповидных клеток (HbS). Последовательности аминокислот в нормальных и аномальных (-цепях различаются тем, что в одной точке аномальных цепей гемоглобина S глутамидовая кислота замещена валином. В результате такого, казалось бы, незначительного изменения гемоглобин S кристаллизуется при низких концентрациях кислорода, а это в свою очередь приводит к тому, что в венозной крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. Физиологический эффект мутации состоит в развитии острой анемии и снижении количества кислорода, переносимого кровью. Анемия не только вызывает физическую слабость, но и может привести к нарушениям деятельности сердца и почек и к ранней смерти людей, гомозиготных по мутантному аллелю.
В гетерозиготном состоянии этот аллель вызывает значительно меньший эффект: эритроциты выглядят нормальными, а аномальный гемоглобин составляет только около 40%. У гетерозигот развивается анемия лишь в слабой форме, а зато в тех областях, где широко распространена малярия, особенно в Африке и Азии, носители аллеля серповидноклеточности невосприимчивы к этой болезни. Это объясняется тем, что ее возбудитель -малярийный плазмодий - не может жить в эритроцитах, содержащих аномальный гемоглобин.
Типы мутаций
Генные мутации – изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.
Хромосомные мутации – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика.
Геномные мутации – изменение количества хромосом. Причины – нарушения при расхождении хромосом.
Полиплоидия – кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
Анеуплоидия – изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом – 47).
Цитоплазматические мутации – изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений – пестролистность.
Соматические – мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры).
Общие закономерности мутационного процесса. Механизмы возникновения генных мутаций
Причины возникновения мутаций
По причинам возникновения различают спонтанные и индуцированные мутации.
Спонтанные (самопроизвольные) мутации возникают без видимых причин. Эти мутации иногда рассматривают как ошибки трех Р: процессов репликации, репарации и рекомбинации ДНК. Это означает, что процесс возникновения новых мутаций находится под генетическим контролем организма. Например, известны мутации, которые повышают или понижают частоту других мутаций; следовательно, существуют гены-мутаторы и гены-антимутаторы.
Индуцированные мутации возникают под действием мутагенов. Мутагены – это разнообразные факторы, которые повышают частоту мутаций. Впервые индуцированные мутации были получены отечественными генетиками Г.А. Надсоном и Г.С. Филипповым в 1925 г. при облучении дрожжей излучением радия.
Различают несколько классов мутагенов:
ü Физические мутагены: ионизирующие излучения, тепловое излучение, ультрафиолетовое излучение.
ü Химические мутагены: аналоги азотистых оснований (например, 5-бромурацил), альдегиды, нитриты, метилирующие агенты, гидроксиламин, ионы тяжелых металлов, некоторые лекарственные препараты и средства защиты растений.
ü Биологические мутагены: чистая ДНК, вирусы, антивирусные вакцины.
ü Аутомутагены – промежуточные продукты обмена веществ. Например, этиловый спирт сам по себе мутагеном не является. Однако в организме человека он окисляется до ацетальдегида, а это вещество уже является мутагеном.
