- •3. Виды информации по общественному значению.
- •2.2. Управление процессами
- •2.3. Организация ввода-вывода
- •2.4. Управление памятью
- •2.5. Файловая система
- •2.6. Современные операционные системы и их краткие характеристики
- •История развития языков программирования
- •1. Си его разновидности
- •3. Фортран
- •Возможности текстового редактора WordPad
- •Интерфейс Office Word 2007
В1.История, современное состояние и перспективы развития вычислительной техники. Элементная база, архитектура, сетевая компоновка, производительность.
Абак (прообраз более знакомых нам счетов) — старейшее из известных счетных устройств, использовался в древней Азии еще в 30 веке до н.э. Чертежи первой механической вычислительной машины были созданы итальянским художником, скульптором и изобретателем Леонардо да Винчи в начале XVI в. Первая механическая машина, которая могла складывать числа, была создана в 1624 г. немецким ученым Вильгельмом Шиккардом. Большой вклад в развитие механических вычислительных машин в XVII в. внесли французский математик и философ Блез Паскаль (1642), немецкий философ и математик Готфрид Лейбниц (1674), создавшие свои варианты счетных машин. Английский математик и экономист Чарльз Бэббидж опередил время на десятилетия. Он изобрел первую программируемую вычислительную машину (1822 г.) В 1927 г. создан первый аналоговый компьютер (Массачусетский технологический институт, США). Эра ЭВМ зарождалась в обстановке II й мировой войны, и первые компьютеры использовались в военных целях. В 1946 г. создан американский компьютер ENIAC, в 1953 г. — советская машина БЭСМ. 1958 — год изобретения электронной интегральной микросхемы. Это был крупный технологический прорыв в вычислительной технике. В 1971 г. американская фирма Intel изобрела микропроцессор — интегральную микросхему, объединившую основные функции управления компьютером. Персональный компьютер на основе процессора Intel 8088 (год выпуска 1979) был создан фирмой IBM в 1981 году. Название «персональный компьютер» вскоре стало нарицательным. Началась эра ПК.
Крупным прорывом в вычислительной технике стало развитие технологий компьютерной связи в 60-80-х годах прошлого века. Глобальное распространение сети Internet и её сервиса World Wide Web в 1993-1995 годах коренным образом изменило информационные технологии, современные тенденции которых: интеграция, создание новых видов обслуживания, создание максимальных удобств для конечного пользователя.
Первое поколение ЭВМ. ЭВМ первого поколения обладали небольшим быстродействием в несколько десятков тыс. оп./сек. Начало современной эры использования ЭВМ в нашей стране относят к 1950 году, когда в институте электротехники АН УССР под руководством С.А. Лебедева была создана первая отечественная ЭВМ под названием МЭСМ – Малая Электронная Счетная Машина. Второе поколение ЭВМ– это переход к транзисторной элементной базе, появление первых мини-ЭВМ. Совершенствование и удешевление ЭВМ привели к снижению удельной стоимости машинного времени и вычислительных ресурсов в общей стоимости автоматизированного решения задачи обработки данных, в то же время расходы на разработку программ (т.е. программирование) почти не снижались, а в ряде случаев имели тенденции к росту. Третье поколение ЭВМ. В 70-х годах возникают и развиваются ЭВМ третьего поколения.Данный этап - переход к интегральной элементной базе и создание многомашинных систем, поскольку значительного увеличения быстродействия на базе одной ЭВМ достичь уже не удавалось. Четвертое поколение ЭВМ. С 1980 года начался современный четвертый этап, для которого характерны переход к большим интегральным схемам, создание серий недорогих микро-ЭВМ, разработка суперЭВМ для высокопроизводительных вычислений. Наиболее значительным стало появление персональных ЭВМ, что позволило приблизить ЭВМ к своему конечному пользователю. Компьютеры стали широко использоваться неспециалистами, что потребовало разработки "дружественного" программного обеспечения.
Архитектура вычислительной машины (Архитектура ЭВМ, Computer architecture) — концептуальная структура вычислительной машины.
Компьютер для решения задач имеет стандартный набор устройств - устройства ввода, обработки, вывода информации. Типовой комплект оборудования персонального компьютера: основные и дополнительные устройства.
Рассмотрим архитектуру компьютера на примере персонального компьютера.
Центральный процессор (ЦПУ, CPU) - Выполнение компьютерных программ. Вычисления, принятие логических решений, управление работой устройств компьютера.
Оперативная память (оперативное запоминающее устройство, ОЗУ, RAM) - Временное (оперативное) хранение загруженных программ и данных. Объем памяти влияет на быстродействие компьютера
Монитор - Отображение текста, графики и видеоинформации на дисплее.
Клавиатура - Ввод текстовой информации. Управление компьютером.
«Мышь» - Управление компьютером. Ввод графической информации.
Колонки - Вывод звука.
Принтер - Вывод текста и графики на бумагу – распечатывание.
Сканер - Ввод графической информации.
Модем - Связь по компьютерной сети с помощью телефонной линии.
Жесткий диск (винчестер) - Хранение системных и прикладных программ, данных пользователя.
Устройство считывания гибких дисков (дисковод) - Считывание и запись гибких дисков.
Устройство считывания оптических дисков - Считывание и запись лазерных дисков.
Устройство бесперебойного питания - Бесперебойное питание. Контроль напряжения питания и включение аккумулятора при его ухудшении или исчезновении.
Производительность. Единицей измерения производительности компьютера является время: компьютер, выполняющий тот же объем работы за меньшее время, является более быстрым. Время выполнения любой программы измеряется в секундах. Наиболее простой способ определения времени называется астрономическим временем, временем ответа (response time), временем выполнения (execution time) или прошедшим временем (elapsed time). Важной характеристикой, часто публикуемой в отчетах по процессорам, является среднее количество тактов синхронизации на одну команду - CPI (clock cycles per instruction). При известном количестве выполняемых команд в программе этот параметр позволяет быстро оценить время ЦП для данной программы.
Таким образом, производительность ЦП зависит от трех параметров: такта (или частоты) синхронизации, среднего количества тактов на команду и количества выполняемых команд. Когда сравниваются две машины, необходимо рассматривать все три компоненты, чтобы понять относительную производительность.
ЭЛЕМЕНТНАЯ БАЗА ЭВМ. В структуре ЭВМ выделяют следующие структурные единицы: устройства, узлы, блоки и элементы. Такая детализация соответствует вполне определенным операциям преобразования информации, заложеным в программах пользователей. Нижний уровень обработки реализуют элементы. Каждый элемент предназначается для обработки единичных электрических сигналов, соответствующих битам информации. Узлы обеспечивают одновременную обработку группы сигналов — информационных слов.Блоки реализуют некоторую последовательность в обработке информационных слов — функционально обособленную часть машинных операций (блок выборки команд, блок записи-чтения и др.). Устройства предназначаются для выполнения отдельных машинных операций и их последовательностей.
Все современные вычислительные машины строятся на комплексах (системах) интегральных микросхем (ИС). Электронная микросхема называется интегральной, если ее компоненты и соединения между ними выполнены в едином технологическом цикле, на едином основании и имеют общую герметизацию и защиту от механических воздействий. Каждая микросхема представляет собой миниатюрную электронную схему, сформированную послойно в кристалле полупроводника: кремния, германия и т.д. В состав микропроцессорных наборов включаются различные типы микросхем, но все они должны иметь единый тип межмодульных связей, основанный на стандартизации параметров сигналов взаимодействия (амплитуда, полярность, длительность импульсов и т.п.). Основу набора обычно составляют большие интегральные схемы (БИС) и сверхбольшие интегральные схемы (СБИС). В ближайшем будущем следует ожидать появления ультрабольших ИС (УБИС). Кроме них обычно используются микросхемы с малой и средней степенью интеграции (СИС). Функционально микросхемы могут соответствовать устройству, узлу или блоку, но каждая из них состоит из комбинации простейших логических элементов, реализующих функции формирования, преобразования, запоминания сигналов и т.д.
В2.Понятие информации. Классификация и виды информационных технологий.
2. Информация — это объект социальных, производственных, культурных отношений. Субъектами информационных отношений являются: создатель информации (лицо, несколько лиц или машина, создавшие ее), владелец (лицо или несколько лиц, которым принадлежит информация) и лица или машины, имеющие доступ к информации (ознакомительный, полный). Информационные отношения регулируются государством законодательно. Информация всегда имеет стоимость и достоверность. Вся информация в современной вычислительной технике, вне зависимости от ее вида, хранится и передается в кодированном, так называемом «двоичном» виде.
Способности и возможности людей обрабатывать информацию ограничены, особенно в условиях всё возрастающих массивов (объёмов) информации. Поэтому появилась необходимость использовать способы хранения, обработки и передачи информации (информационные технологии
информационнаятехнология – это представленное в проектной форме (т. е. в формализованном виде, пригодном для практического использования) концентрированное выражение научных знаний и практического опыта, позволяющее рациональным образом организовать тот или иной достаточно часто повторяющийся информационный процесс. При этом достигается экономия затрат труда, энергии людских и материальных ресурсов, необходимых для реализации данного процесса.
Виды информационных технологий
Любая информационная технология обычно нужна для того, чтобы пользователи могли получить нужную им информацию на определённом носителе данных. В информационных технологиях выделяют следующие виды информации.
1. По типу информации это могут быть текстовые, табличные, графические, звуковые, видео и мультимедийные данные
2. Виды информации по способу восприятия.
1) зрение – визуальная;
2) слух – аудиальная;
3) обоняние – обонятельная;
4) вкус – вкусовая;
5) осязание – тактильная.
3. Виды информации по общественному значению.
1. Личная (знания, умения, навыки, интуиция).
2. Массовая (общественная, обыденная, эстетическая).
3. Специальная (научная, производственная, техническая, управленческая).
По выполняемым функциям и возможности применения информационные технологии делят на используемые:
1) в автономных компьютерах (ПЭВМ) и в локальных рабочих станциях (АРМ) в составе сетевых автоматизированных информационных систем (АИС) реального времени;
2) в объектно-ориентированных, распределённых, корпоративных и иных локальных и сетевых информационно-поисковых, гипертекстовых и мультимедийных системах;
3) в системах с искусственным интеллектом;
4) в интегрированных АИС;
5) в геоинформационных, глобальных и других системах.
Информационные технологии классифицируются по степени типизации операций: операционные и предметные технологии. Операционная технология подразумевает, что каждая операция выполняется на конкретном рабочем месте, оборудованном необходимыми программными и техническими средствами. В качестве примера можно привести пакетную обработку информации на больших ЭВМ. Предметная технология это выполнение всех операций на одном рабочем месте, например, при работе на персональном компьютере (АРМ). По виду используемых сетей информационные технологии делят на: локальные, региональные, корпоративные, национальные, межнациональные (международные), одноранговые, многоуровневые, распределённые и др. Напомним, что основу информационных технологий составляют информационные процессы создания, сбора, регистрация и обработки, накопления, хранения и сохранения, поиска и передачи информации.
В3. Операционные системы. Назначение, классификация, современное состояние, знакомство с возможностями и работа в современной операционной системе
Операционная система (ОС) — это пакет системных программ, выполняющих управление прикладными программами и управляющих работой устройств вычислительной системы.
Назначение ОС: 1) запуск и управление работой прикладных программ и предоставление им виртуальной машины — услуг, организующих и упрощающих взаимодействие с оборудованием; 2) управление устройствами ввода-вывода и другим оборудованием
Операционная система выполняет следующие основные системные функции по управлению локальными ресурсами компьютера:
запуск системных и прикладных процессов и управление ими;
управление оборудованием с помощью ввода-вывода;
управление размещением данных в оперативной памяти;
управление файловой системой — набором файлов и каталогов.
Для выполнения данных функций ОС имеет соответствующие подсистемы, которые описаны ниже.
По количеству одновременно выполняющихся процессов ОС подразделяются на две основные группы: однозадачные и многозадачные. Большинство современных ОС являются многозадачными.
По количеству одновременно работающих пользователей ОС подразделяются на однопользовательские и многопользовательские.
2.2. Управление процессами
Ниже рассматривается упрощенная схема работы персонального компьютера (рис. 7). Объяснение данной схемы является важным обобщением материала, изученного в предыдущей главе, и послужит полезным руководством для дальнейшего освоения материала.
Опишем принцип схему работы компьютерных программ. Напомним, что процессом называется компьютерная программа, запущенная на выполнение. Операционная система — это первый процесс, появляющийся в компьютере после его включения. ОС загружается (поз. 5) центральным процессором (поз. 1) автоматически с накопителя (поз. 4) в оперативную память (поз. 2). ОС загружается при запуске или перезапуске компьютера и работает непрерывно в автоматическом режиме. Работа компьютера без ОС невозможна.
При работе компьютера вся информация проходит через связующее устройство — системную шину (поз. 3). При работе компьютера центральный процессор, выполняя команды операционной системы, загружает и запускает другие программы (поз. 6), образуя многозадачную среду. По окончании работы процесса он выгружается из памяти операционной системой, освобождая место.
В многозадачных системах остро стоит вопрос исключения конфликтов при совместном использовании общих аппаратных ресурсов и областей оперативной памяти. Поэтому в многозадачных ОС существуют сложные механизмы взаимных исключений и критических секций. При запуске каждого процесса операционной системой ему отводится отдельная область оперативной памяти — адресное пространство. Другие процессы не имеют доступа к нему, чтобы не нарушить стабильность работы процесса и всей системы.
В ОС многонитевой обработки процессы могут разбиваться программистом-разработчиком на несколько нитей — отдельных частей одного процесса, выполняющихся одновременно. Это делается для повышения производительности программы. Нити процесса имеют одновременный доступ к адресному пространству этого процесса.
