- •1. Онтогенез, его периодизация и продолжительность у человека.
- •2. Мейоз как генетическая основа цитогенеза. Генетические механизмы регуляции мейоза.
- •3. Гаметогенез и его виды.
- •4. Эмбриональный период онтогенеза и его периодизация.
- •5. Особенности эмбрионального развития человека.
- •6. Регуляция онтогенеза.
- •7. Критические периоды онтогенеза.
- •8. Типы наследования генов (признаков).
- •9. Генотип-единая система взаимодействующих генов. Виды взаимодействия генов.
- •10. Межаллельное взаимодействие генов и его виды.
- •11. Пенентрантность и экспресивность генов. Плейотропное действие генов.
- •12. Множественный аллелизм. Наследование группы крови аво у человека.
- •13. Взаимодействие неаллельных генов и его виды.
- •14. Основные положения хромосомной теории наследственности генов т. Моргана.
- •15. Полное и неполное сцепление генов.
- •16. Кроссинговер. Гипотезы, объясняющие его механизм.
- •17. Генетическое картирование: принципы и методы.
- •18. Анализ сцепления генов.
- •19. Цитоплазматическая наследственность. Особенность наследования плазмагенов.
- •20. Генетические механизмы определения пола.
- •21. Особенности строения половых хромосом человека. Группы сцепления половых хромосом.
- •22. Половые признаки: первичные, вторичные, зависимые от пола, сцепленные с полом, ограниченные полом.
- •23. Формирование пола в ходе онтогенеза.
- •24. Соотношение полов, изменение соотношения полов в онтогенезе. Факторы, вляющие на соотношение полов.
- •25. Мутации, приводящие к нарушению репродуктивной функции.
- •34. Геномные мутации, их классификация, механизмы и причины возникновения. Болезни, связанные с изменением числа хромосом.
- •43. Современные и классические методы изучения генетики человека.
- •45. Критерии для определения типов наследования признаков.
- •Механизм естественного отбора
- •55. Системы браков и их роль в распределении аллелей в человеческих популяциях.
1. Онтогенез, его периодизация и продолжительность у человека.
Онтогенез – процесс индивидуального развития живого существа от момента оплодотворения яйцеклетки до смерти. Онтогенез состоит из двух периодов:
· пренатального (внутриутробного);
· постнатального (внеутробного).
С общебиологической точки зрения его можно разделить на три периода:
В дорепродуктивном периоде особь не способна к размножению. Основное содержание его заключается в развитии зрелого в половом отношении фенотипа. В этом периоде происходят наиболее выраженные структурные и функциональные преобразования, реализуется основная часть наследственной информации, организм обладает высокой чувствительностью ко всевозможным воздействиям.
В репродуктивном периоде особь осуществляет функцию полового размножения, отличается наиболее стабильным функционированием органов и систем, а также относительной устойчивостью к воздействиям.
Пострепродуктивный период связан со старением организма и характеризуется ослаблением или полным прекращением участия в размножении. Снижаются приспособительные возможности и устойчивость к разнообразным воздействиям. Применительно к онтогенезу человека названные периоды дополнительно характеризуются специфическими социальными моментами (образование, трудоспособность, творчество).
Дорепродуктивный период подразделяют еще на четыре периода: эмбриональный(период онтогенеза начинается с момента оплодотворения и продолжается до выхода зародыша из яйцевых оболочек), личиночный(в типичном варианте наблюдается в развитии тех позвоночных, зародыши которых выходят из яйцевых оболочек и начинают вести самостоятельный образ жизни, не достигнув дефинитивных (зрелых) черт организации), метаморфоз(В процессе метаморфоза происходят такие важные морфогенетические преобразования, как частичное разрушение, перестройка и новообразование органов) и ювенильный(начинается с момента завершения метаморфоза и заканчивается половым созреванием и началом размножения).
Продолжительность эмбрионального развития человека в норме составляет около 280 дней (40 недель или 10 лунных месяцев) и включает два основных периода: зародышевый (первые 8 недель) и плодный (с 9-й по 40-ю неделю).
Примечание: некоторые учёные выделяют три периода эмбрионального развития человека: начальный (первая неделя, до начала имплантации), зародышевый (2-я – 8-я недели) и плодный (9-я – 40-я недели).
2. Мейоз как генетическая основа цитогенеза. Генетические механизмы регуляции мейоза.
МЕЙОЗ (деления созревания, период созревания), этап в образовании половых клеток; состоит из двух последовательных делений исходной диплоидной клетки (содержат два набора хромосом – 2n) и формирования четырёх гаплоидных половых клеток, или гамет (содержат по одному набору хромосом – n). Уменьшение (редукция) числа хромосом (2nn) происходит за счёт того, что на два деления приходится лишь одно удвоение (репликация) хромосомного материала. При оплодотворении гаплоидные гаметы – яйцеклетка и сперматозоид – сливаются и диплоидное число хромосом, характерное для каждого вида, восстанавливается (n + n2n).
В главных чертах мейоз протекает сходно у разных групп организмов и у особей женского и мужского пола. Два следующих друг за другом деления первичной половой клетки обозначаются как мейоз I и мейоз II. Подобно делению соматических клеток – митозу, и мейоз I, и мейоз II состоят из четырёх основных стадий – профазы, метафазы, анафазы и телофазы. Вступающая в мейоз клетка диплоидна, а каждая хромосома содержит удвоенное количество ДНК. В первом мейотическом делении особенно сложна и длительна профаза I (у человека она занимает 22,5 сут). На этой стадии гомологичные хромосомы соединяются (конъюгируют) в пары – биваленты. В каждой хромосоме бивалента различимы в микроскопе две продольные половины – хроматиды, т. е. бивалент представляет собой четвёрку (тетраду) хроматид. В профазе I происходит генетически значимое событие – обмен гомологичными (содержащими одни и те же гены) участками несестринских хроматид, или кроссинговер. В анафазе I биваленты разъединяются и гомологичные хромосомы расходятся к противоположным полюсам клетки, причем, в отличие от анафазы митоза, каждая хромосома сохраняет две хроматиды. В результате число хромосом уменьшилось вдвое, но удвоенным остаётся и количество ДНК, представленное двумя хроматидами. Важная особенность расхождения хромосом заключается в том, что любая, отцовская или материнская, хромосома из гомологичной пары может отойти к любому из полюсов независимо от того, как расходятся хромосомы других пар. Это означает, что число возможных сочетаний хромосом в дочерних клетках обычно очень велико: 2n, где n – число хромосомных пар (у человека – 223). Так происходит ещё одно перемешивание родительского генетического материала – рекомбинация хромосом.
После мейоза I обычно сразу или после короткой интерфазы, во время которой удвоение хромосом не происходит, следует мейоз II. Это деление аналогично митозу с той разницей, что делятся гаплоидные клетки. В анафазе II сестринские хроматиды разделяются и, став хромосомами, расходятся к полюсам. Число хромосом и количество ДНК приходят в соответствие, и мейоз II завершается образованием четырёх гаплоидных гамет, каждая из которых несёт уникальный генетический материал. У самок, однако, лишь одна из четырёх гамет – яйцеклетка, способная к оплодотворению.
Мейоз – один из ключевых биологических процессов. Его значение состоит в поддержании в поколениях постоянства хромосомных наборов (кариотипов), т. е. в обеспечении наследственности, и в создании новых сочетаний отцовских и материнских генов, т. е. в обеспечении генотипической изменчивости.
