- •1.Предмет и задачи ветеринарной радиологии. Связь с другими науками. Составные части радиобиологии и радиологии.
- •2.История радиобиологии и ветеринарной радиологии. Ветеринарной радиология в Беларуси.
- •3.Строение атома. Ядра атомов. Физическая характеристика протонов и нейтронов.,
- •4.Ядерные силы. Дефект массы.
- •5. Электронные оболочки атома. Процессы возбуждения и ионизации атомов.
- •6.Изотопы, изобары, изомеры. Сходство и различие свойств.
- •7. Закон радиоактивного распада. Постоянная распада, период полураспада радионуклида.
- •8.Явление радиоактивности.
- •9.Типы ядерных превращений:альфа-распад и бета-распад.
- •15.Искусственная радиоактивность и ядерные реакции(деление и синтез ядер
- •16.Взаимодействие корпускулярных излучений с веществом.
- •17.Виды взаимодействия электромагнитных излучений с веществом.
- •18.Понятие о дозиметрии, цель и задачи. Доза излучения и ее мощность.
- •19.Экспозиционная доза и единицы ее измерения.
- •20. Экспозиционная доза и единицы ее измерения
- •23. Взвешивающие коэффициенты для отдельных видов излучения, тканей и органов
- •0,25 Полов.Железа
- •24 . Радиометрия как раздел вет-й радиологии.Классификация методов и средств обнаружения и регистрации ионизирующих излучений
- •29 Система и структура радиационного контроля на территории рб.Зоны радиационного контроля
- •38 Естественные источники ионизирующих излучений
- •39 Искусственные источники ионизирующих излучений
- •41. Миграция радионуклидов по кормовым и пищевым цепочкам.
- •42. Источники и пути поступления радиоактивных веществ в организм. Накопление и выведение радионуклидов из организма.
- •43. Типы распределения радионуклидов в организме: равномерный, остеотропные, печеночные, тиреотропный и другие. Понятие о критическом органе.
- •44.Эффективный период полувыведения.
- •45.Факторы, определяющие степень токсичности радиоактивных изотопов.
- •46.Классификация радиоизотопов по их токсичности. Характеристика наиболее значимых природных радионуклидов (тритий,углерод, калий, радий, радон, уран).
- •47.Характеристика наиболее значимых продуктов ядерного деления стронций -89, 90, йод- 131, цезий 134 и 137, плутоний- 238, 239, 241.
- •50. Основные принципы радиационной безопасности: нормирования, обоснования и оптимизации.
- •51. Основные принципы защиты от внешнего облучения при работе с радиоактивными веществами.
- •52. Основные принципы защиты от внутреннего облучения при работе с радиоактивными веществами.
- •55. Организационные мероприятия по снижению поступления радионуклидов в сельскохозяйственную продукцию.
- •56. Агрохимические и агротехнические приемы ограничения поступления радионуклидов в продукции растениеводства.
- •57. Закономерности перехода радионуклидов цезия и стронция в сельскохозяйственную продукцию.
- •62.Теория биологического действия.
- •67. Радиоционные синдромы при остром облучении всего организма.
- •68. Острая лучевая болезнь ,вызванная внешним облучением. Этиология,степени тяжести,патогенез.
- •69.Клинические признаки острой лучевой болезни, патологоанатомические изменения .Прогноз,лечение и профилактика.
- •71. Хроническая лучевая болезнь. Причины, диагностика, течение, прогноз и исход.
- •73. Отдалённые последствия облучения(опухолевые и неопухолевые формы).Генетические эффекты.
- •74. Комбинированные лучевые поражения
38 Естественные источники ионизирующих излучений
Космическое излучение. Это ионизирующее излучение, падающее на поверхность Земли из мирового пространства. Первичное космическое излучение образуется на поверхности звезд. Оно состоит в основном из ядер легких атомов:водорода – протонов (79%), гелия – альфа-частиц (20%), лития, бериллия, бора, углерода, азота, кислорода и других элементов. Лишь немногие частицы достигают поверхности Земли, т. к. они взаимодействуют с атомами воздуха, рождая потоки частиц вторичного космического излучения (в основном мезоны (70%), электроны и позитроны (26%), гамма-кванты, быстрые нейтроны).
Для оценки биологического воздействия вторичное космическое излучение делят по уровню энергии и составу на четыре компонента:
мягкий, или малопроникающий (объединяет электроны, позитроны, гамма-кванты и частично быстрые протоны с энергиями порядка 100 МэВ);жесткий, или сильнопроникающий (в основном мезоны с энергиями порядка 600 МэВ, небольшого количества сверхбыстрых протонов с энергией более 400 МэВ,альфа-частиц);сильноионизирующий (содержит продукты ядерных расщеплений: протоны, альфа-частицы, дейтроны, тритоны и более тяжелые осколки ядер с энергией 10-15 МэВ);нейтронный (нейтроны различных энергий).На уровне моря космическое излучение состоит в основном из мягкого и жесткого компонентов. Мягкий компонент поглощается слоями свинца толщиной 8-10 см и железа – 15-20 см, жесткий проходит через свинец толщиной более 1м. Частицы мягкого и жесткого компонентов, обладая большими энергиями в веществе, создают наименьшую плотность ионизации. Поэтому их относительная биологическая эффективность (ОБЭ) приравнивается к 1. Частицы сильноионизирующего компонента имеют большую плотность ионизации. Их ОБЭ равна 10. Доза космических лучей в биологических тканях на 11% больше, чем в воздухе, т. к. сверхбыстрые нейтроны, сталкиваясь с ядрами атомов С, N и О в тканях, вызывают их расщепление с образованием быстрых нейтронов, которые создают дополнительную ионизацию.Природные радиоактивные вещества. Среднегодовая доза для человека составляет около 1,2 мГр на гонады и 1,3 мГр на скелет и считается безопасной.
Фоновая доза обусловлена внешним и внутренним облучением биологических объектов, включая человека и животных, различными источниками радиоактивного излучения. Внешнее облучение происходит от космического излучения, естественных и искусственных радиоактивных источников из окружающей среды. Нормативный уровень гамма-фона (мощность экспозиционной дозы) считается до 20 мкР/ч.Внутреннее облучение связано с поступлением радионуклидов в организм человека и животных, прежде всего по пищевым и кормовым цепочкам, а также с воздухом и через кожу.
39 Искусственные источники ионизирующих излучений
Искусственные (техногенных) источники ионизирующего излучения используются в промышленности, энергетике, медицине .
Медицина. В настоящее время основной вклад в дозу, полученную человеком от искусственных источников радиации, вносят медицинские процедуры и методы лечения, связанные с применением облучения.Медицинское облучение отличается от облучения другими источниками тем, что людей облучают преднамеренно. Оправдание целесообразности такого облучения заключается в том, что польза превышает риск. Рентгенодиагностика в медицине подразделяется на рентгенографию и рентгеноскопию. Рентгеновские установки являются наиболее распространенными источниками искусственного облучения.
Чаще других органов рентгеновским исследованиям подвергаются зубы, грудная клетка и конечности. Однако, эффективные дозы от этих исследований относительно низкие - обычно 20 мЗв (0,002 бэр) - в стоматологических исследованиях или при одном снимке грудной клетки.
Наибольший вклад в дозу от рентгеновского излучения в медицине вносят исследования желудка (с бариевой кашей), нижних отделов кишечника (бариевая клизма) и мочевыделительной системы (внутривенная урограмма). Каждое из этих исследований включает применение контрастных веществ для получения четкого изображения мягких тканей. В результате изготовление большого числа снимков при этих исследованиях пациент получает дозы, которые в сотни раз выше, чем дозы при обычных исследованиях зубов или грудной клетки.
Рентгенотерапия - это метод лечения заболевания путем воздействия на очаг рентгеновского излучения. Рентгенотерапия используется исключительно при лечении злокачественных заболеваний в целях излечивания тяжелых проявлений болезни. Для этого наиболее часто применяют пучки высокоэнергетического излучения от источника кобальта-60.
На ткань-мишень подаются высокие дозы (десятки Грэй), в то время как окружающие здоровые ткани остаются по возможности необлученными. Дозы при рентгенотерапии очень высоки, и поэтому эта процедура считается тяжелой. Её применяют только при чрезвычайно серьезных обстоятельствах, когда другие виды лечения не дают эффективных результатов
Глобальные эффекты ядерных испытаний ,Ядерная энергетика и промышленность
40.Возможность загрязнения внешней среды при использовании радиоактивных веществ в сельском хозяйстве, медицине, биологии и др.Радиоактивные вещества поступают во внешнюю среду в результате испытаний ядерного и термоядерного оружия, в качестве отходов промышленных и энергетических реакторов и в результате аварийных ситуаций на этих установках, в результате транспортировки и хранения радиоактивных отходов. Например, при сбрасывании радиоактивных отходов в реку Колорадо (США) было зарегистрировано увеличение содержания радионуклидов в 400 раз.
Химические свойства радионуклидов обусловлены местом расположения элемента в периодической системе Д. И. Менделеева. Высокой химической активностью обладают радионуклиды элементов I группы и галогенов, которые не образуют труднорастворимых соединений, менее подвижны нуклиды щелочноземельных элементов. Наименьшей химической активностью обладают радионуклиды редкоземельных элементов, таких, как цирконий и ниобий, а также радионуклиды трансурановых элементов.При радиационных авариях на атомных электростанциях происходит выброс в окружающую среду большого количества радиоактивных веществ, которые загрязняют среду обитания всего живого на Земле, в том числе и сельскохозяйственные угодья. При этом установлено, что основное воздействие излучения на население обусловлено потреблением продуктов питания, выращенных на загрязненных территориях, и в основном молока. К настоящему времени в мире произошло несколько крупных радиационных аварий, среди которых наибольший ущерб нанесла чернобыльская. При радиационной аварии выделяют несколько периодов в развитии радиационной ситуации. Первый период называют периодом йодной опасности. Вследствие короткого периода полураспада изотопов йода этот период непродолжителен и завершается в течение нескольких месяцев. При поедании животными загрязненных йодом кормов происходит его интенсивный переход в молоко и мясо. Второй период в развитии радиационной обстановки начинается после распада короткоживуших радионуклидов и сопровождается преимущественно некорневым загрязнением кормовых угодий. Заканчивается этот период с завершением первого послерадиационного срока вегетации растений. Третий период радиоэкологической ситуации в агропромышленном комплексе начинается со второго срока вегетации растений после радиационных выпадений. В этот период основным путем поступления радионуклидов в растения является корневой. Продолжительность периода может быть несколько десятков лет, если в составе аварийных выбросов присутствует большое количество долгоживущих изотопов Cs, Sr, Pu и др.
РАДИОАКТИВНОЕ ЗАГРЯЗНЕНИЕ ЛЕСНЫХ ФИТОЦЕНОЗОВ
При выпадении радиоактивных веществ на территории лесных массивов значительная часть радионуклидов опускается и задерживается кронами деревьев, осаждаясь на листьях, хвое и коре, другая их часть попадает под полог деревьев в травяной покров, лесную подстилку и почву. Доля радионуклидов, задерживающихся в пологе леса, варьирует в зависимости от состава, сомкнутости, формы и фазы вегетации древесной растительности
Во время аварии на ЧАЭС наибольшему радиоактивному загрязнению подверглись лесные фитоценозы, особенно хвойные. В них выпало радионуклидов в 3...5 раз больше, чем на пашне и лугах. Леса служили естественными фильтрами, задерживающими радиоактивные аэрозоли. При радиоактивном загрязнении естественных фитоценозов наблюдается большое разнообразие.
