
- •Лавинно-пролітний діод
- •Будова і зонна діаграма
- •Принципи генерації
- •Типова конструкція лдп
- •Використання лпд для генерації нвч-коливань
- •Параметри лпд
- •Діод Ганна
- •Зона структура матеріалу
- •Механізм генерації
- •Утворення доменів
- •Режим прольоту
- •Умова реалізації генерації
- •Генерація нвч-коливань в діодах
- •Недоліки та переваги генераторів ганна
- •Оптоелектроніка
- •Переваги ое
- •Недоліки ое
- •Основні прилади ое
- •Основні поняття оптики
- •Електромагнітні хвилі
- •Механізми поглинання світла
- •Заломлення та відбиття cвітла
- •Формула друде-фойгта
- •Спектри пропускання та відбиття
- •Прямозонні та непрямозонні матеріали
- •Визначення Еg
- •Екситонне поглинання
- •Люмінесценція
- •Фоторезистивний ефект
- •Оптоелектроніка
- •Напівпровідники для виготовлення джерел світла світлодіоди
- •Параметри світлодіодів
- •Напівпровідникові лазери
- •Напівпровідникові фотоприймачі
- •Напівпровідникові фотоприймачі
- •Фотодіоди
- •Фотодіоди
- •Фотоприймачі з внутрішнім підсиленням
- •Основні параметри фотоприймачів
- •Фізичні принципи роботи се
- •Конструкція се
- •Поява струму при освітлені
- •Процеси у фотоперетворювачах
- •Точка максимальної потужності
- •Еквівалентна схема се
- •Сонячний спектр в космосі та на землі
- •Обмеження ефективності се
- •3) Напруга холостого ходу (Voc).
- •Для даного сонячного спектру, існує оптимальна ширина забороненої зони матеріалу
- •Гетеропереходи
- •Характеристики тонкоплівкових феп
- •Стан гетерограниці
- •Вплив границь зерен
- •Типи потенціальних бар’єрів на межі зерна
- •Вплив часу життя носіїв заряду на характеристики се
- •Нові матеріали поглинаючих шарів се
- •Багатоперехідні (каскадні) сонячні перетворювачі
- •Оптрони та їх застосування
- •Зростання ккд се
- •Оптрони та їх застосування
- •Оптрони та їх застосування
- •Оптрони та їх застосування
- •Основи мікроелектроніки
- •Елементи конструкції іс
- •Класифікація ic
- •Система умовних позначень іс
- •Гібридні ic
- •2 Необхідно мати універсальні іс.
- •Гібридна технологія
- •Плівкові конденсатори
- •Технологія створення ic
- •Технологія виготовлення інтегральних мдн- структур
- •Ізоляція
- •Біполярні транзистори
- •Багатоемітерні транзистори
- •Бт з бар'єром шотткі
- •Мон (мдн)- транзистори
- •Резистори
- •Конденсатори
- •Іс з інжекційним живленням
- •Іс з інжекційним живленням
Фотодіоди
-
Оскільки фото ЕРС і пряма напруга ввімкнені назустріч одна одній, то при їх рівності струм діода дорівнює нулю, що відповідає режимові холостого ходу. ЕРС холостого ходу при I = 0 можна визначити за формулою: EФ=Тln(
)
-
Цю фото ЕРС знаходять також з ВАХ.
-
Фотодіоди використовують у двох режимах: вентильного фотоелемента (рис. 1) та фотодіодному (рис. б). У першому режимі фотодіод використовують як джерело струму, датчик, що генерує ЕРС EФ, у чутливому індикаторі випромінювання або сонячній батареї. Фото ЕРС може досягати 1 В. У цьому режимі робоча точка пересувається вздовж осі на ВАХ залежно від інтенсивності світла.
-
У другому режимі (рис. 2) фотодіод працює на зворотній гілці ВАХ як фоторезистор, опір якого залежить від світлового потоку. Робоча точка може займати будь-яке положення між осями UЗВ, IЗВ, залежно від напруги джерела U і світлового потоку Ф.
-
Фотострум залежить не тільки від потоку Ф, але і від довжини хвилі світлового випромінювання, яке діє на p–n перехід. Цей факт ілюструє спектральна характеристика рис. 3.
-
Параметрами фотодіода є: темновий струм IТ струм, що проходить через діод при робочій напрузі і відсутності світла; Uроб - робоча напруга напруга на діоді у фотодіодному режимі; SФ=IФ/Ф інтегральна чутливість.
Спектральна
характеристика германієвого фотодіода
Вентильний
і фотодіодний режими роботи фотоелемента
Фотоприймачі з внутрішнім підсиленням
-
До таких фотоприймачів належать фототранзистори та фототиристори.
-
Крім перетворення світлової енергії в електричну з утворенням фотоструму, як у фотодіодах, фототранзистор ще й підсилює цей фотострум.
-
Розглянемо роботу фототранзистора у ССЕ в режимі з вимкненою базою (IБ=0) (рис. ).
Якщо Ф=0, то через фототранзистор проходить невеликий темновий струм
IТ=IКБ0(h21Е+1).
При освітленні області бази через вікно (Ф>0) в ній генеруються нерівноважні пари носіїв заряду – фотоелектрони та фотодірки, які дифундують до ЕП та КП. При цьому поле КП розділяє заряди: електрони рухаються до n - колектора, дірки – до p- бази. У колі колектора під дією цих електронів зростає струм на величину IФ. Дірки створюють у базі позитивний заряд, який зміщує ЕП у прямому напрямі і викликає інжекцію електронів. Унаслідок інжекції електронів через ЕП, їх дифузії через базу та екстракції через КП струм колектора додатково зростає на величину h21Е IФ. Тобто фотодірки у базі відіграють роль вхідного струму бази.
Структура і
схема вмикання фототранзистора (а),
статичні вихідні характеристики (б)
-
Загальний колекторний струм фототранзистора
IК=IФ+h21ЕIФ+IТ= (1+h21Е)IФ+IТ
-
Сім’я ВАХ фототранзистора IК = f(UКБ)Ф = const показана на рис. Збільшення освітлення фототранзистора приводить, згідно з формулою, до зростання колекторного струму. Інтегральна чутливість фототранзистора SФ в (1+h21Е) раз більша, ніж у фотодіода. Це пояснюється тим, що у фототранзистора струм IФ підсилюється в (1+h21Е) раз.
-
Фототиристори (рис.) є фотоприймачами з ключовою пороговою характеристикою, вони застосовуються для перемикання великих струмів і напруги. ВАХ з відкриваючою дією світлового потоку показана на рис.
-
Засвічення базової області тиристора зумовлює генерацію надлишкових носіїв заряду, що приводить до перемикання чотиришарової структури із закритого стану у відкритий так само, як це буває у триністорі при перемиканні керувальним струмом.
Структура,
схема вмикання (а) та ВАХ (б) фототиристора