
- •Основні напрями розвитку електроніки. Вакуумна, твердотільна і квантова електроніка. Визначення та завдання.
- •Основні етапи розвитку мікроелектроніки. Класифікація виробів електроніки по виду енергії, потужності, частоті. Активні і пасивні елементи.
- •Основні матеріали напівпровідникової техніки. Елементарні напівпровідники IV підгрупи періодичної системи. Сполуки а3в5 та а2в6. Інші нп матеріали. Їх властивості та використання.
- •4. Будова моно- , полікристалічних та аморфних матеріалів. Ізо- та анізотропія. Ближній та дальній порядок в матеріалах.
- •5. Кристалічна гратка. Елементарна комірка, її параметри, гратка Браве. Види сингоній, їх особливості. Прості гратки.
- •6. Позначення вузлів, напрямків та кристалографічних площин у кристалах та Індекси Міллера. Класифікація структурних дефектів в кристалах. Крайові та гвинтові дислокації. Вектор Бюргерса.
- •7.Зонна структура нп, її утворення. Метали, напівпровідники, діелектрики. Власні та домішкові напівпровідники. Їх зонні діаграми. Основні носії у матеріалах.
- •Статистика електронів і дірок у нп х. Власна і домішкова провідність нп. Вирази для концентрації носіїв та провідності.
- •Рухливість електронів і дірок. Основні механізми розсіювання носіїв. Вплив температури на рухливість носіїв заряду.
- •Рівень Фермі. Положення рівня Фермі у власних та домішкових нп х. Вплив температури на положення рівня Фермі у власних та домішкових нп х.
- •Дрейфові і дифузійні струми у нп х.
- •Фундаментальні рівняння твердотільної електроніки. Рівняння повного струму. Рівняння Пуассона. Рівняння неперервності. Закон електронейтральності.
- •Спорідненість до електрону. Робота виходу з нп n- та p-типа. Термоелектронна емісія в нп х. Формула Річардсона.
- •Ефект поля в поверхневому шарі Нп кристалу. Зонні діаграми при ефекті поля. Області збіднення, збагачення, інверсії. Дебаєвська довжина екранування.
- •Енергетична діаграма контакту метал-напівпровідник. Перехід Шоткі у рівноважному стані. Його основні параметри. Вах переходу. Переваги та недоліки діодів Шоткі.
- •Процеси на р-n - переході під дією зовн. Напруги. Діаграми енергетичних зон переходу. Вах ідеального p-n переходу. Ємність р-n переход у та його еквівалентна схема.
- •Особливості вах реальних випрямних контактів. Явище пробою переходу. Його різновиди.
- •Гетеропереходи. Вимоги до матеріалів гетеропереходу. Ізотипні та анізотипні гетеропереходи. Різкі та плавні гетеропереходи. Побудова зонних діаграм гетеропереходів.
- •Класифікація та система позначень діодів. Випрямні діоди. Їх особливості та використання. Основні параметри.
- •Нп стабілітрони і стабістори. Принцип роботи. Їх вах. Застосування.
- •Універсальні діоди. Вимоги до універсальний діодів.
- •Імпульсні діоди та перехідні процеси в них. Шляхи отримання необхідних параметрів.
- •Тунельні діоди. Вах діодів та її пояснення. Вимоги до конструкції. Обернені діоди. Особливості вах. Використання.
- •Варикапи та варактори. Вимоги до приладів. Основні параметри. Конструкція.
- •Діоди Шотткі. Конструкція. Переваги та недоліки.
- •Загальні відомості про біполярні транз. (бт). Класифікація транз.Ів. Система позначень бт.
- •Будова і технологія виготовлення сплавного транз.Ів. Способи вмикання і режими роботи бт. Схеми зі спільною базою, емітером і колектором.
- •Принцип дії бт в активному режимі у схемі зі спільною базою. Коеф.И перенесення, помноження колекторного струму, Статич. Коеф. Передачі струму.
- •Вплив конструкції та режиму роботи транз.А на Статич. Коеф. Передачі струму.
- •Статичні х-ки бт. Бт як чотириполюсник. Y, z, та h системи опису характеристик транз.Ів.
- •Статичні х-ки бт зі спільною базою. Вхідні і вихідні х-ки. Х-ки прямої передачі та зворотного зв’язку.
- •Статичні х-ки бт зі спільним емітером та спільним колектором. Вхідні і вихідні х-ки. Х-ки прямої передачі та зворотного зв’язку.
- •Вплив температури на статичні х-ки транз.Ів. Схема підключення зі спільною базою, спільним емітером. Граничні режими роботи транз.А.
- •Пробій транз.А. Тепловий та електричний пробої. Вплив на них опору у колі бази. Вторинний пробій та пробій замикання. Макс. Допустима потужність, що розсіюється колектором.
- •IKmax - максимальним струмом колектора;
- •Диференціальні параметри бт. Відповідність між малими амплітудами струмів і напруги чотириполюсника. Визначення h параметрів за вхідними та вихідними х-ками бт.
- •Фізичні параметри та еквівалентні схеми бт при різних підключеннях (зі спільною базою, спільним емітером). Залежність фізичних параметрів від емітерного струму, колекторної напруги, температури.
- •Робота бт у динамічному режимі. Принцип дії підсилювального каскаду на бт. Схеми зі спільною базою та спільним емітером.
- •Способи забезпечення режиму спокою транз.Ного каскаду. Схеми з фіксованим струмом бази та фіксованим потенціалом бази.
- •Способи забезпечення режиму спокою транз.Ного каскаду. Схеми з температурною стабілізацією в емітерному колі, спільною базою та автоматичним зміщенням робочої точки.
- •Оцінка транз.Них каскадів з точки зору температурної нестабільності.
- •Динамічні х-ки бт та їх використання. Вхідна навантажувальна х-ка. Вхідна навантажувальна х-ка.
- •Параметри режиму підсилення та їх розрахунок за динамічними х-ками транз.Ного каскаду.
- •Частотні властивості бт. Схеми зі спільною базою та спільним емітером. Вплив ємностей переходів і розподіленого опору бази на частотні властивості транз.А.
- •Робота бт у ключовому режимі. Переміщення робочої точки в ключовому (імпульсному) режимі транз.А.
- •Диференціальні параметри пт. Крутизна прохідної х-ки. Внутрш. (Диференц.) опір. Статич. Коеф. Підсилення напруги та Диференц. Вхідний опір.
- •Пт з ізольованим затвором (мдн). Ефект поля. Мдн-транз. З індукованим каналом. Мдн-транз. З вбудованим каналом. Структурна схема, принцип дії та х-ки мдн.
- •Вплив температури на х-ки пт. Температурний дрейф стокозатворних характеристик пт з клерувальним p-n переходом. Вплив температури на стокові х-ки.
- •Динамічний режим роботи пт. Схеми забезпечення режиму спокою пт.
- •Каскад на пт: розрахунок у статиці та динаміці. Параметри підсилювача на пт з клерувальним p-n-переходом.
- •Частотні властивості пт. Гранична частота пт з клерувальним p-n переходом та мдн-транз.Ів.
- •Польові прилади з зарядовим зв’язком (пзз). Їх принцип дії. Основні параметри польових пзз.
- •Будова та принцип дії тиристорів. Їх маркування та позначення. Вах тиристора.
- •Диністорний та триністорний режим роботи тиристору. Залежність напруги переключення триністора від струму керування. Симістори. Структура та вах.
- •Бт з ізольованим затвором. Cтруктурна схема, умовне позначення. Переваги та недоліки.
- •Оптоелектроніка визначення,риси, переваги. Прилади оптоелектроніки
- •Прямозонні та непрямозонні матеріали, їх коеф.И поглинання. Визначення ширини забор. Зон.Нп матеріалів. Екситони. Енергія утворення екситону. Вільні та зв’язані екситону. Екситонне поглинання.
- •Люмінесценція. Її види. Спонтанна та вимушена рекомбінація. Люмінесценція. Інжекційна та ударна люмінесценція.
- •Фоторезистивний ефект. Надлишкова концентрація носіїв заряду під час ефекту. Оптоелектронні нп прилади. Їх класифікація.
- •Нп лазери. Їх принцип роботи та будова. Типи лазерних діодів. Області використання одномодових та багатомодових лазерів.
- •Нп фотоприймачі. Їх види. Фоторезистори. Будова та схема вмикання. Недоліки та переваги. Фотодіоди. Принцип роботи та будова. Вах фотодіода. Основні параметри фотоприймачів(не полностью)
- •Фотоприймачі з внутрішнім підсиленням. Фоторезистори та фототиристори. Будова та принцип роботи. Схеми вмикання. Вигляд вах.(не полностью)
- •Сонячні елементи. Загальні відомості. Сонячні елементи на основі p-n- переходів та гетеропереходів. Х-ки сонячного випромін.. Режими освітлення. Ккд фотоперетворювачів. (не полностью)
- •Оптрони, позначення, принцип роботи та будова. Переваги та недоліки оптронів. Їх застосування.
- •Основи мікроелектроніки. Основні поняття та визначення. Елементи конструкції інтегральних схем. Класифікація інтегральних схем. Позначення інтегральних схем.
- •Дві основні технології виготовлення інтегральних схем. Різновиди гібридних інтегральних схем. Резистори. Конденсатори. Індуктивності. Діоди. Їх виготовлення.
- •Резистори
-
Фотоприймачі з внутрішнім підсиленням. Фоторезистори та фототиристори. Будова та принцип роботи. Схеми вмикання. Вигляд вах.(не полностью)
До таких фотоприймачів належать фототранзистори та фототиристори.
Крім перетворення світлової енергії в електричну з утворенням фотоструму, як у фотодіодах, фототранз. ще й підсилює цей фотострум.
Розглянемо роботу фототранз.а у ССЕ в режимі з вимкненою базою (IБ=0) (рис. ).
Якщо Ф=0, то через фототранз. проходить невеликий темновий струм
IТ=IКБ0(h21Е+1).
При освітленні області бази через вікно (Ф>0) в ній генеруються нерівноважні пари носіїв заряду – фотоелектрони та фотодірки, які дифундують до ЕП та КП. При цьому поле КП розділяє заряди: електрони рухаються до n - колектора, дірки – до p- бази. У колі колектора під дією цих електронів зростає струм на величину IФ. Дірки створюють у базі позитивний заряд, який зміщує ЕП у прямому напрямі і викликає інжекцію електронів. Унаслідок інжекції електронів через ЕП, їх дифузії через базу та екстракції через КП струм колектора додатково зростає на величину h21Е IФ. Тобто фотодірки у базі відіграють роль вхідного струму бази.
Загальний
колекторний струм фототранз.а
IК=IФ+h21ЕIФ+IТ= (1+h21Е)IФ+IТ
Сім’я ВАХ фототранз.а IК=f(UКБ)Ф=const показана на рис. Збільшення освітлення фототранз.а приводить, згідно з формулою, до зростання колекторного струму. Інтегральна чутливість фототранз.а SФ в (1+h21Е) раз більша, ніж у фотодіода. Це пояснюється тим, що у фототранз.а струм IФ підсилюється в (1+h21Е) раз.
Фототиристори
(рис. ) є фотоприймачами з ключовою
пороговою характеристикою і застосовуються
для перемикання великих струмів і
напруг. ВАХ з відкриваючою дією
світлового потоку показана на рис.
Засвічення базової області тиристора зумовлює генерацію надлишкових носіїв заряду, що приводить до перемикання чотиришарової структури із закритого стану у відкритий так само, як це буває у триністорі при перемиканні керувальним струмом.
-
Сонячні елементи. Загальні відомості. Сонячні елементи на основі p-n- переходів та гетеропереходів. Х-ки сонячного випромін.. Режими освітлення. Ккд фотоперетворювачів. (не полностью)
Перетворення енергії у фотоелектричних перетворювачах (ФЕП) засноване на фотовольтаїчному ефекті, який виникає в неоднорідних НП структурах при дії на них сонячного випромін..
Неоднорідність структури ФЕП може бути отримана шляхом легуванням одного і того ж НП різними домішками (створення p–n - переходів) або шляхом з'єднання різних НП з неоднаковою шириною забор. зон.(створення гетеропереходів).
Гетеропереходом (ГП) називають контакт двох напівпровідників, які розрізняються структурними та електрофізичними параметрами: кристалічною структурою, шириною забороненої зони, величиною електронної спорідненості, діелектричними сталими, ефективною масою тощо. Внаслідок цього їх експериментальне дослідження та теоретичний опис набагато складніші ніж у випадку p-n-переходів. Розрізняють ізотипні і анізотипні гетеропереходи. Якщо гетероперехід утворений двома напівпровідниками одного типу провідності, то говорять про ізотипний гетероперехід. Анізотипні гетеропереходи утворюються напівпровідниками з різним типом провідності. Найбільш перспективними вважаються СЕ на основі ГП між сполуками А2В6 Гетеропереходи утворенні сполуками цієї групи, досліджуються вже більше 40 років. Однак в основному вивчені структури, де на монокристалічну підкладку з однієї сполуки різними методами нанесена епітаксіальна плівка іншої сполуки. Серед сполук А2В6 тільки ZnTe і CdTe у нелегованому вигляді можуть мати діркову провідність, всі інші мають n-тип, тому створення анізотипних гетеропереходів можливе лише з даними матеріалами.
У типовому багатоперехідному сонячному елементі одиночні фотоелементи розташовані один за одним таким чином, що сонячне світло спочатку потрапляє на елемент з найбільшою шириною забороненої зони, при цьому поглинаються фотони з найбільшою енергією. Пропущені верхнім шаром фотони проникають в наступний елемент з меншою шириною забороненої зони і так далі.
-
Фізичні принципи роботи сонячних елементів. Їх конструкція. Основні процеси у сонячних елементах. Еквівалентна схема сонячних елементів. Їх темнові та світлові ВАХ. Точка макс.ї потужності. Вплив на ВАХ послідовного і шунтуючого опорів. Основні х-ки фотоперетворювачів.
При роботі СЕ приладів відбуваються наступні процеси:
1. Генерація електронно-діркових пар під дією випромін.;
2. Дифузія неосновних фотогенерованих носіїв до p-n, гетеро- або переходу напівпровідник-метал;
3. Розділення носіїв переходом;4. Збирання носіїв омічними контактами.
Процеси рекомбінації характеризуються часом життя неосновних носіїв заряду

-
- час життя неосновних носіїв заряду; - їх теплова швидкість; Sr - переріз захвату носіїв рекомбінаційними центрами.
Дифузійна довжина неосновних носіїв заряду пов’язана з їх часом життя
де k – стала Больцмана; - рухливість носіїв заряду; е – заряд електрона.
Точка макс.ї потужності