
- •Основні напрями розвитку електроніки. Вакуумна, твердотільна і квантова електроніка. Визначення та завдання.
- •Основні етапи розвитку мікроелектроніки. Класифікація виробів електроніки по виду енергії, потужності, частоті. Активні і пасивні елементи.
- •Основні матеріали напівпровідникової техніки. Елементарні напівпровідники IV підгрупи періодичної системи. Сполуки а3в5 та а2в6. Інші нп матеріали. Їх властивості та використання.
- •4. Будова моно- , полікристалічних та аморфних матеріалів. Ізо- та анізотропія. Ближній та дальній порядок в матеріалах.
- •5. Кристалічна гратка. Елементарна комірка, її параметри, гратка Браве. Види сингоній, їх особливості. Прості гратки.
- •6. Позначення вузлів, напрямків та кристалографічних площин у кристалах та Індекси Міллера. Класифікація структурних дефектів в кристалах. Крайові та гвинтові дислокації. Вектор Бюргерса.
- •7.Зонна структура нп, її утворення. Метали, напівпровідники, діелектрики. Власні та домішкові напівпровідники. Їх зонні діаграми. Основні носії у матеріалах.
- •Статистика електронів і дірок у нп х. Власна і домішкова провідність нп. Вирази для концентрації носіїв та провідності.
- •Рухливість електронів і дірок. Основні механізми розсіювання носіїв. Вплив температури на рухливість носіїв заряду.
- •Рівень Фермі. Положення рівня Фермі у власних та домішкових нп х. Вплив температури на положення рівня Фермі у власних та домішкових нп х.
- •Дрейфові і дифузійні струми у нп х.
- •Фундаментальні рівняння твердотільної електроніки. Рівняння повного струму. Рівняння Пуассона. Рівняння неперервності. Закон електронейтральності.
- •Спорідненість до електрону. Робота виходу з нп n- та p-типа. Термоелектронна емісія в нп х. Формула Річардсона.
- •Ефект поля в поверхневому шарі Нп кристалу. Зонні діаграми при ефекті поля. Області збіднення, збагачення, інверсії. Дебаєвська довжина екранування.
- •Енергетична діаграма контакту метал-напівпровідник. Перехід Шоткі у рівноважному стані. Його основні параметри. Вах переходу. Переваги та недоліки діодів Шоткі.
- •Процеси на р-n - переході під дією зовн. Напруги. Діаграми енергетичних зон переходу. Вах ідеального p-n переходу. Ємність р-n переход у та його еквівалентна схема.
- •Особливості вах реальних випрямних контактів. Явище пробою переходу. Його різновиди.
- •Гетеропереходи. Вимоги до матеріалів гетеропереходу. Ізотипні та анізотипні гетеропереходи. Різкі та плавні гетеропереходи. Побудова зонних діаграм гетеропереходів.
- •Класифікація та система позначень діодів. Випрямні діоди. Їх особливості та використання. Основні параметри.
- •Нп стабілітрони і стабістори. Принцип роботи. Їх вах. Застосування.
- •Універсальні діоди. Вимоги до універсальний діодів.
- •Імпульсні діоди та перехідні процеси в них. Шляхи отримання необхідних параметрів.
- •Тунельні діоди. Вах діодів та її пояснення. Вимоги до конструкції. Обернені діоди. Особливості вах. Використання.
- •Варикапи та варактори. Вимоги до приладів. Основні параметри. Конструкція.
- •Діоди Шотткі. Конструкція. Переваги та недоліки.
- •Загальні відомості про біполярні транз. (бт). Класифікація транз.Ів. Система позначень бт.
- •Будова і технологія виготовлення сплавного транз.Ів. Способи вмикання і режими роботи бт. Схеми зі спільною базою, емітером і колектором.
- •Принцип дії бт в активному режимі у схемі зі спільною базою. Коеф.И перенесення, помноження колекторного струму, Статич. Коеф. Передачі струму.
- •Вплив конструкції та режиму роботи транз.А на Статич. Коеф. Передачі струму.
- •Статичні х-ки бт. Бт як чотириполюсник. Y, z, та h системи опису характеристик транз.Ів.
- •Статичні х-ки бт зі спільною базою. Вхідні і вихідні х-ки. Х-ки прямої передачі та зворотного зв’язку.
- •Статичні х-ки бт зі спільним емітером та спільним колектором. Вхідні і вихідні х-ки. Х-ки прямої передачі та зворотного зв’язку.
- •Вплив температури на статичні х-ки транз.Ів. Схема підключення зі спільною базою, спільним емітером. Граничні режими роботи транз.А.
- •Пробій транз.А. Тепловий та електричний пробої. Вплив на них опору у колі бази. Вторинний пробій та пробій замикання. Макс. Допустима потужність, що розсіюється колектором.
- •IKmax - максимальним струмом колектора;
- •Диференціальні параметри бт. Відповідність між малими амплітудами струмів і напруги чотириполюсника. Визначення h параметрів за вхідними та вихідними х-ками бт.
- •Фізичні параметри та еквівалентні схеми бт при різних підключеннях (зі спільною базою, спільним емітером). Залежність фізичних параметрів від емітерного струму, колекторної напруги, температури.
- •Робота бт у динамічному режимі. Принцип дії підсилювального каскаду на бт. Схеми зі спільною базою та спільним емітером.
- •Способи забезпечення режиму спокою транз.Ного каскаду. Схеми з фіксованим струмом бази та фіксованим потенціалом бази.
- •Способи забезпечення режиму спокою транз.Ного каскаду. Схеми з температурною стабілізацією в емітерному колі, спільною базою та автоматичним зміщенням робочої точки.
- •Оцінка транз.Них каскадів з точки зору температурної нестабільності.
- •Динамічні х-ки бт та їх використання. Вхідна навантажувальна х-ка. Вхідна навантажувальна х-ка.
- •Параметри режиму підсилення та їх розрахунок за динамічними х-ками транз.Ного каскаду.
- •Частотні властивості бт. Схеми зі спільною базою та спільним емітером. Вплив ємностей переходів і розподіленого опору бази на частотні властивості транз.А.
- •Робота бт у ключовому режимі. Переміщення робочої точки в ключовому (імпульсному) режимі транз.А.
- •Диференціальні параметри пт. Крутизна прохідної х-ки. Внутрш. (Диференц.) опір. Статич. Коеф. Підсилення напруги та Диференц. Вхідний опір.
- •Пт з ізольованим затвором (мдн). Ефект поля. Мдн-транз. З індукованим каналом. Мдн-транз. З вбудованим каналом. Структурна схема, принцип дії та х-ки мдн.
- •Вплив температури на х-ки пт. Температурний дрейф стокозатворних характеристик пт з клерувальним p-n переходом. Вплив температури на стокові х-ки.
- •Динамічний режим роботи пт. Схеми забезпечення режиму спокою пт.
- •Каскад на пт: розрахунок у статиці та динаміці. Параметри підсилювача на пт з клерувальним p-n-переходом.
- •Частотні властивості пт. Гранична частота пт з клерувальним p-n переходом та мдн-транз.Ів.
- •Польові прилади з зарядовим зв’язком (пзз). Їх принцип дії. Основні параметри польових пзз.
- •Будова та принцип дії тиристорів. Їх маркування та позначення. Вах тиристора.
- •Диністорний та триністорний режим роботи тиристору. Залежність напруги переключення триністора від струму керування. Симістори. Структура та вах.
- •Бт з ізольованим затвором. Cтруктурна схема, умовне позначення. Переваги та недоліки.
- •Оптоелектроніка визначення,риси, переваги. Прилади оптоелектроніки
- •Прямозонні та непрямозонні матеріали, їх коеф.И поглинання. Визначення ширини забор. Зон.Нп матеріалів. Екситони. Енергія утворення екситону. Вільні та зв’язані екситону. Екситонне поглинання.
- •Люмінесценція. Її види. Спонтанна та вимушена рекомбінація. Люмінесценція. Інжекційна та ударна люмінесценція.
- •Фоторезистивний ефект. Надлишкова концентрація носіїв заряду під час ефекту. Оптоелектронні нп прилади. Їх класифікація.
- •Нп лазери. Їх принцип роботи та будова. Типи лазерних діодів. Області використання одномодових та багатомодових лазерів.
- •Нп фотоприймачі. Їх види. Фоторезистори. Будова та схема вмикання. Недоліки та переваги. Фотодіоди. Принцип роботи та будова. Вах фотодіода. Основні параметри фотоприймачів(не полностью)
- •Фотоприймачі з внутрішнім підсиленням. Фоторезистори та фототиристори. Будова та принцип роботи. Схеми вмикання. Вигляд вах.(не полностью)
- •Сонячні елементи. Загальні відомості. Сонячні елементи на основі p-n- переходів та гетеропереходів. Х-ки сонячного випромін.. Режими освітлення. Ккд фотоперетворювачів. (не полностью)
- •Оптрони, позначення, принцип роботи та будова. Переваги та недоліки оптронів. Їх застосування.
- •Основи мікроелектроніки. Основні поняття та визначення. Елементи конструкції інтегральних схем. Класифікація інтегральних схем. Позначення інтегральних схем.
- •Дві основні технології виготовлення інтегральних схем. Різновиди гібридних інтегральних схем. Резистори. Конденсатори. Індуктивності. Діоди. Їх виготовлення.
- •Резистори
-
Робота бт у динамічному режимі. Принцип дії підсилювального каскаду на бт. Схеми зі спільною базою та спільним емітером.
Під час роботи БТ у різних електронних схемах до його вхідного кола находять сигнали у формі змінної напруги, яка змінює вхідний та вихідний струми приладу. У цьому випадку БТ працює в динамічному режимі: зміна струму колектора IK у транз.і відбувається внаслідок одночасної зміни вхідного струму (IE або IБ) і напруги на колекторі (UКБ або UКЕ).
Основним різновидом динамічного режиму БТ є підсилювальний режим.
ПІДСИЛЮВАЛЬНИЙ КАСКАД НА БІПОЛЯРНОМУ ТРАНЗ.І
Схема зі спільною базою
Схема транз.ного підсилювача зі спільною базою зображена на рисунку.
За відсутності вхідного сигналу (Uвх=0) у вхідному колі БТ діє напруга спокою UЕБ0, створена за рахунок джерела ЕЕ, і протікає струм IE0 - емітерний струм спокою. У вихідному колі діють відповідно напруга UКБ0 (від джерела ЕK) і струм IK0. У колі бази UКБ0 = EK - IK0RK. Початковий режим БТ – активний.
При надходженні на вхід схеми сигналу Uвх = Umвхsint починається динамічний режим роботи БТ. Практично вся напруга Uвх = 0 падає на резисторі R1, і тоді напруга UEБ змінюватиметься за законом
UEБ = EK + Umвхsint .
Часові діаграми напруги і струмів каскаду показано на рисунку. Оскільки БТ працює в активному режимі, разом зі зміною UЕБ змінюватимуться емітерний IE, колекторний IK струми, а також напруга на колекторі UKБ (рис.). Колекторна напруга змінюється за законом UKБ = EE – IK0RK + ImKRK sint .
З діаграм видно, що вхідна Uвх і вихідна Uвих напруги схеми не змінюються у фазі одна відносно іншої (каскад за схемою зі спільною базою не інвертує вхідного сигналу). Амплітуда Umвих може бути більша за амплітуду вхідного сигналу, якщо відповідно вибрати величину колекторного опору RK, тобто в цьому випадку каскад підсилює напругу. Процес підсилення полягає в перетворенні енергії джерела живлення EK в енергію вихідного сигналу. При цьому транз. відіграє роль своєрідного регулятора, який керує струмом джерела. Величина і форма вихідної напруги залежать не тільки від величини і форми вхідного сигналу, величини RK, але і від вибору положення початкової робочої точки на х-ках БТ (UEБ0, IЕ0, UКБ0, IК0).
Схема зі спільним емітером
Схема транз.ного підсилювача зі спільним емітером показана на рис.1, а часові діаграми пристрою – на рис.2. Режим спокою забезпечується двома джерелами EБ - (напруга UБЕ0 і струм IБ0) і EК (напруга UKЕ0 і струм IK0). Напруга колектора UKE0 = EK – IK0RK .
У режимі підсилення вхідного сигналу під час додатного півперіоду вхідної напруги пряма напруга ЕП транз.а зменшується, струм бази IБ та колектора IK також зменшуються, що викликає збільшення напруги колектора UKE. Якщо робота відбувається на лінійній ділянці х-ки транз.а, то форми змінних складових струмів бази і колектора збігаються з формою вхідної напруги, а зміна напруги на колекторі, зумовлена змінною складовою колекторного струму, є протифазною відносно вхідної напруги. Отже, схема підсилювального каскаду на БТ зі спільним емітером є інвертувальною схемою. Як випливає з попереднього матеріалу, схема рис.1 здатна підсилювати не лише напругу, а і струм.