
- •Твердотільна електроніка
- •Передмова
- •1 Елементи фізики напівпровідників та електронно-діркових переходів
- •1.1 Загальні відомості про напівпровідники
- •1.1.1 Власна електропровідність напівпровідників
- •1.1.2 Електронна провідність напівпровідників
- •1.1.3 Діркова провідність напівпровідників
- •1.1.4 Рекомбінація носіїв заряду та тривалість їх життя
- •1.1.5 Види струмів у напівпровідниках
- •1.2 Електронно - дірковий перехід та фізичні процеси в ньому
- •Пряме включення переходу
- •Зворотне включення переходу
- •1.2.4 Теоретична вольт-амперна характеристика
- •1.2.5 Параметри переходу
- •Товщина переходу
- •Ємності переходу
- •1.2.6 Реальна вах переходу
- •Пряма гілка вах
- •Зворотна гілка вах
- •1.3 Різновиди електричних переходів та контактів
- •1.3.1 Гетеропереходи
- •1.3.4 Контакти металу з напівпровідниками
- •1.3.5 Омічні контакти
- •2 Напівпровідникові діоди
- •2.1 Класифікація та система позначень діодів
- •2.2 Випрямні діоди
- •Параметри випрямних діодів
- •2.3 Напівпровідникові стабілітрони
- •2.4 Універсальні діоди
- •2.5 Імпульсні діоди та перехідні процеси в них
- •2.6 Тунельні та обернені діоди
- •2.7 Варикапи
- •2.8 Діоди Шотткі
- •3 Біполярні транзистори
- •3.1 Будова та принцип дії біполярних транзисторів
- •3.1.1 Загальні відомості про біполярні транзистори
- •Класифікація транзисторів
- •Система позначень бт
- •Будова сплавних транзисторів
- •3.1.2 Способи вмикання й режими роботи біполярних транзисторів
- •3.1.3 Принцип дії біполярного транзистора в активному режимі
- •3.1.4 Вплив конструкції та режиму роботи транзистора на h21б
- •3.1.5 Схема вмикання транзистора зі спільним емітером та спільним колектором
- •3.1.6 Модель Еберса-Молла
- •3.2 Статичні характеристики і параметри біполярних транзисторів
- •3.2.1 Статичні характеристики біполярного транзистора у схемі зі спільною базою
- •Вхідні характеристики
- •Вихідні характеристики
- •Характеристики прямої передачі
- •Характеристики зворотного зв’язку
- •3.2.2 Статичні характеристики біполярного транзистора у схемі зі спільним емітером
- •Вхідні характеристики
- •Вихідні характеристики
- •Характеристики прямої передачі
- •Характеристики зворотного зв’язку
- •3.2.3 Статичні характеристики біполярного транзистора у схемі зі спільним коллектором
- •3.2.4 Вплив температури на статичні характеристики транзисторів
- •3.2.5 Граничні режими транзистора
- •Пробої транзистора
- •Максимально допустима потужність, що розсіюється колектором
- •3.2.6 Диференціальні параметри біполярного транзистора
- •Зв'язок між h-параметрами для різних схем увімкнення бт
- •3.2.7 Фізичні параметри та еквівалентні схеми біполярних транзисторів
- •3.3 Робота біполярного транзистора у динамічному режимі
- •3.3.1 Принцип дії підсилювального каскаду на біполярному транзисторі
- •3.3.2 Способи забезпечення режиму спокою транзисторного каскаду
- •Емітерному колі
- •Оцінка транзисторних каскадів з точки зору температурної нестабільності
- •3.3.3 Динамічні характеристики біполярного транзистора та їх використання
- •Вихідна навантажувальна характеристика
- •Вхідна навантажувальна характеристика
- •Параметри режиму підсилення та їх розрахунок за динамічними характеристиками транзисторного каскаду
- •3.3.4 Частотні властивості біполярних транзисторів
- •Вплив ємностей переходів і розподіленого опору бази на частотні властивості транзистора
- •3.3.5 Робота біполярного транзистора у ключовому режимі
- •3.4 Деякі різновиди біполярних транзисторів
- •3.4.1 Одноперехідний транзистор
- •3.4.2 Високочастотні малопотужні транзистори
- •3.4.3 Потужні транзистори
- •4 Польові транзистори
- •4.1 Польові транзистори з керувальним переходом
- •Статичні вхідні характеристики
- •Статичні прохідні (стокозатворні) характеристики
- •Статичні вихідні (стокові) характеристики
- •Диференціальні параметри польових транзисторів
- •4.2 Польові транзистори з ізольованим затвором (мдн - транзистори)
- •4.2.1 Ефект поля
- •4.3 Залежність характеристик і параметрів польових транзисторів від температури
- •4.4 Динамічний режим роботи польових транзисторів
- •4.4.1 Каскад на польовому транзисторі: розрахунок у статиці та динаміці
- •4.4.2 Частотні властивості польових транзисторів
- •4.5 Потужні польові транзистори
- •Потужні мдн – транзистори
- •Транзистори зі статичною індукцією
- •4.6 Польові прилади із зарядовим зв’язком
- •5 Тиристори
- •5.1 Будова, принцип дії та режими роботи тиристора
- •5.1.1 Загальні відомості
- •5.1.2 Диністорний режим
- •5.1.3 Триністорний режим
- •5.1.4 Симістори
- •5.2 Способи комутації тиристорів
- •5.2.1 Увімкнення тиристорів
- •Увімкнення за допомогою струму керування
- •Увімкнення тиристора за допомогою імпульсу анодної напруги
- •5.2.2 Вимкнення тиристорів
- •Вимкнення за допомогою подачі напруги на керувальний електрод (за допомогою струму керування)
- •5.3 Біполярні транзистори з ізольованим затвором
- •6 Оптоелектронні напівпровідникові прилади
- •6.1 Загальні відомості
- •6.2 Випромінювальні діоди
- •6.3 Напівпровідникові фотоприймачі
- •6.3.1 Фоторезистори
- •6.3.2 Фотодіоди
- •6.3.3 Фотоприймачі з внутрішнім підсиленням
- •6.4 Оптрони та їх застосування
- •7 Основи мікроелектроніки
- •7.1 Основні поняття і визначення
- •Історична довідка
- •7.2 Гібридні інтегральні схеми
- •7.3 Напівпровідникові інтегральні схеми
- •7.3.1 Технологія
- •Планарно-дифузійна технологія виготовлення біполярних напівпровідникових інтегральних схем
- •7.3.2 Технологія виготовлення інтегральних
- •Ізоляція
- •7.3.3 Біполярні транзистори
- •Багатоемітерні транзистори
- •Супербета - транзистори
- •Біполярні транзистори з бар'єром Шотткі
- •7.3.4 Мон (мдн)- транзистори
- •7.3.6 Резистори
- •7.3.7 Конденсатори
- •7.4 Інтегральні схеми з інжекційним живленням
- •Позначення основних величин
- •Список літератури
- •3 Біполярні транзистори 69
- •3.1 Будова та принцип дії біполярних транзисторів 69
- •3.1.1 Загальні відомості про біполярні транзистори 69
- •6 Оптоелектронні напівпровідникові
- •Твердотільна електронікА
Пряме включення переходу
Вважатимемо,
що до невипрямних контактів a
і b
прикладено
пряму напругу
(рис. 1.10). Оскільки опір р-n переходу
значно перевищує опори нейтральних
областей, то зовнішня напруга повністю
спадає на цьому переході. Результуюча
напруга у
переході
зменшується, оскільки зовнішнє
електричне поле
має напрям, протилежний напряму
(рис. 1.10 а):
.
Унаслідок
цього зменшується потенціальний бар’єр
переходу до значення
(рис. 1.10 в, г), зменшується також
гальмівна дія поля переходу на дифузійний
рух основних носіїв, що приводить до
зростання дифузійного струму через
перехід. Дрейфовий струм при цьому не
зазнає зміни, бо його величина, як це
видно з формули (1.15), залежить від
концентрації неосновних носіїв у
нейтральних областях р-
та n-кристалів.
Ці концентрації, у свою чергу, залежать
виключно від концентрації домішок у
НП та від температури. Тому зменшення
поля
переходу,
яке є прискорюючим для неосновних
носіїв, приводить до зниження швидкості
дрейфу цих носіїв, а їх концентрація
залишається незмінною. Отже, умова
термодинамічної рівноваги (1.16)
порушується:
,
тобто виникає результуючий прямий
струм через перехід. Величина цього
струму визначається дифузійною складовою
.
Це струм основних носіїв. Унаслідок
переважання дифузії над екстракцією
біля меж
переходу
відбувається накопичення неосновних
носіїв, концентрація яких зростає до
величин
і
(рис.
1.10 б):
, (1.19)
, (1.20)
де
- контактна різниця потенціалів;
-
прикладена пряма напруга;
і
- концентрації неосновних нерівноважних
носіїв біля меж переходу.
Явище підвищення концентрації неосновних носіїв у р- та n-областях під дією зовнішньої прямої напруги називається інжекцією. Область, з якої інжектують носії, є емітером, а область, в якій інжекція здійснюється, називається базою. Унаслідок рекомбінації неосновних носіїв у р- та n-областях створюються градієнти їх концентрації (рис. 1.10 б).
Рисунок 1.10 – Пряме включення р-nпереходу
Концентрації неосновних нерівноважних носіїв змінюються, отже, вздовж координати х за законами
, (1.21)
. (1.22)
З
формул (1.21) і (1.22) можна одержати вирази
для
та
(1.19), (1.20) на межі між р-
та
n-
напівпровідниками
.
Інжекція
кількісно оцінюється рівнем інжекції
,
який визначається відношенням приросту
концентрації інжектованих носіїв
до рівноважної концентрації основних
носіїв:
.
При
<<1
рівень інжекції вважається низьким.
При середньому (
=1)
та високому (
>>1)
рівнях інжекції значна частина основних
носіїв з метою компенсації зарядів
інжектованих неосновних носіїв залишає
нейтральні області НП і підходить до
меж
переходу.
Внаслідок цього в цих областях виникає
створене іонами домішкових атомів
електричне поле. При низьких рівнях
інжекції, властивих малопотужним
напівпровідниковим приладам, які
розглядаються нижче, це явище майже
відсутнє.
Під дією градієнта концентрації неосновні нерівноважні носії дифундують углиб НП, порушуючи електронейтральність кристала. Відновлення нейтрального стану НП відбувається за рахунок надходження носіїв від зовнішнього джерела напруги. Це є причиною протікання струму в зовнішньому колі.