
- •Твердотільна електроніка
- •Передмова
- •1 Елементи фізики напівпровідників та електронно-діркових переходів
- •1.1 Загальні відомості про напівпровідники
- •1.1.1 Власна електропровідність напівпровідників
- •1.1.2 Електронна провідність напівпровідників
- •1.1.3 Діркова провідність напівпровідників
- •1.1.4 Рекомбінація носіїв заряду та тривалість їх життя
- •1.1.5 Види струмів у напівпровідниках
- •1.2 Електронно - дірковий перехід та фізичні процеси в ньому
- •Пряме включення переходу
- •Зворотне включення переходу
- •1.2.4 Теоретична вольт-амперна характеристика
- •1.2.5 Параметри переходу
- •Товщина переходу
- •Ємності переходу
- •1.2.6 Реальна вах переходу
- •Пряма гілка вах
- •Зворотна гілка вах
- •1.3 Різновиди електричних переходів та контактів
- •1.3.1 Гетеропереходи
- •1.3.4 Контакти металу з напівпровідниками
- •1.3.5 Омічні контакти
- •2 Напівпровідникові діоди
- •2.1 Класифікація та система позначень діодів
- •2.2 Випрямні діоди
- •Параметри випрямних діодів
- •2.3 Напівпровідникові стабілітрони
- •2.4 Універсальні діоди
- •2.5 Імпульсні діоди та перехідні процеси в них
- •2.6 Тунельні та обернені діоди
- •2.7 Варикапи
- •2.8 Діоди Шотткі
- •3 Біполярні транзистори
- •3.1 Будова та принцип дії біполярних транзисторів
- •3.1.1 Загальні відомості про біполярні транзистори
- •Класифікація транзисторів
- •Система позначень бт
- •Будова сплавних транзисторів
- •3.1.2 Способи вмикання й режими роботи біполярних транзисторів
- •3.1.3 Принцип дії біполярного транзистора в активному режимі
- •3.1.4 Вплив конструкції та режиму роботи транзистора на h21б
- •3.1.5 Схема вмикання транзистора зі спільним емітером та спільним колектором
- •3.1.6 Модель Еберса-Молла
- •3.2 Статичні характеристики і параметри біполярних транзисторів
- •3.2.1 Статичні характеристики біполярного транзистора у схемі зі спільною базою
- •Вхідні характеристики
- •Вихідні характеристики
- •Характеристики прямої передачі
- •Характеристики зворотного зв’язку
- •3.2.2 Статичні характеристики біполярного транзистора у схемі зі спільним емітером
- •Вхідні характеристики
- •Вихідні характеристики
- •Характеристики прямої передачі
- •Характеристики зворотного зв’язку
- •3.2.3 Статичні характеристики біполярного транзистора у схемі зі спільним коллектором
- •3.2.4 Вплив температури на статичні характеристики транзисторів
- •3.2.5 Граничні режими транзистора
- •Пробої транзистора
- •Максимально допустима потужність, що розсіюється колектором
- •3.2.6 Диференціальні параметри біполярного транзистора
- •Зв'язок між h-параметрами для різних схем увімкнення бт
- •3.2.7 Фізичні параметри та еквівалентні схеми біполярних транзисторів
- •3.3 Робота біполярного транзистора у динамічному режимі
- •3.3.1 Принцип дії підсилювального каскаду на біполярному транзисторі
- •3.3.2 Способи забезпечення режиму спокою транзисторного каскаду
- •Емітерному колі
- •Оцінка транзисторних каскадів з точки зору температурної нестабільності
- •3.3.3 Динамічні характеристики біполярного транзистора та їх використання
- •Вихідна навантажувальна характеристика
- •Вхідна навантажувальна характеристика
- •Параметри режиму підсилення та їх розрахунок за динамічними характеристиками транзисторного каскаду
- •3.3.4 Частотні властивості біполярних транзисторів
- •Вплив ємностей переходів і розподіленого опору бази на частотні властивості транзистора
- •3.3.5 Робота біполярного транзистора у ключовому режимі
- •3.4 Деякі різновиди біполярних транзисторів
- •3.4.1 Одноперехідний транзистор
- •3.4.2 Високочастотні малопотужні транзистори
- •3.4.3 Потужні транзистори
- •4 Польові транзистори
- •4.1 Польові транзистори з керувальним переходом
- •Статичні вхідні характеристики
- •Статичні прохідні (стокозатворні) характеристики
- •Статичні вихідні (стокові) характеристики
- •Диференціальні параметри польових транзисторів
- •4.2 Польові транзистори з ізольованим затвором (мдн - транзистори)
- •4.2.1 Ефект поля
- •4.3 Залежність характеристик і параметрів польових транзисторів від температури
- •4.4 Динамічний режим роботи польових транзисторів
- •4.4.1 Каскад на польовому транзисторі: розрахунок у статиці та динаміці
- •4.4.2 Частотні властивості польових транзисторів
- •4.5 Потужні польові транзистори
- •Потужні мдн – транзистори
- •Транзистори зі статичною індукцією
- •4.6 Польові прилади із зарядовим зв’язком
- •5 Тиристори
- •5.1 Будова, принцип дії та режими роботи тиристора
- •5.1.1 Загальні відомості
- •5.1.2 Диністорний режим
- •5.1.3 Триністорний режим
- •5.1.4 Симістори
- •5.2 Способи комутації тиристорів
- •5.2.1 Увімкнення тиристорів
- •Увімкнення за допомогою струму керування
- •Увімкнення тиристора за допомогою імпульсу анодної напруги
- •5.2.2 Вимкнення тиристорів
- •Вимкнення за допомогою подачі напруги на керувальний електрод (за допомогою струму керування)
- •5.3 Біполярні транзистори з ізольованим затвором
- •6 Оптоелектронні напівпровідникові прилади
- •6.1 Загальні відомості
- •6.2 Випромінювальні діоди
- •6.3 Напівпровідникові фотоприймачі
- •6.3.1 Фоторезистори
- •6.3.2 Фотодіоди
- •6.3.3 Фотоприймачі з внутрішнім підсиленням
- •6.4 Оптрони та їх застосування
- •7 Основи мікроелектроніки
- •7.1 Основні поняття і визначення
- •Історична довідка
- •7.2 Гібридні інтегральні схеми
- •7.3 Напівпровідникові інтегральні схеми
- •7.3.1 Технологія
- •Планарно-дифузійна технологія виготовлення біполярних напівпровідникових інтегральних схем
- •7.3.2 Технологія виготовлення інтегральних
- •Ізоляція
- •7.3.3 Біполярні транзистори
- •Багатоемітерні транзистори
- •Супербета - транзистори
- •Біполярні транзистори з бар'єром Шотткі
- •7.3.4 Мон (мдн)- транзистори
- •7.3.6 Резистори
- •7.3.7 Конденсатори
- •7.4 Інтегральні схеми з інжекційним живленням
- •Позначення основних величин
- •Список літератури
- •3 Біполярні транзистори 69
- •3.1 Будова та принцип дії біполярних транзисторів 69
- •3.1.1 Загальні відомості про біполярні транзистори 69
- •6 Оптоелектронні напівпровідникові
- •Твердотільна електронікА
6.3 Напівпровідникові фотоприймачі
Фотоприймачі призначені для перетворення світлових сигналів в електричні. У напівпровідникових фотоприладах використовується внутрішній фотоефект, який полягає в тому, що при опроміненні електрони напівпровідникового кристала набирають додаткової енергії, що необхідна для вивільнення їх з ковалентних зв’язків. Тому в напівпровідниках з’являються додаткові носії електричного заряду, які збільшують електропровідність.
6.3.1 Фоторезистори
Фоторезисторами називають напівпровідникові прилади, електричний опір яких змінюється під дією світла. Конструктивно фоторезистор складається з діелектрика 3, на який нанесено світлочутливий шар напівпровідника 1, і зовнішніх електродів 2 (рис. 6.5 а).
а) б) в)
Рисунок 6.5 – Будова (а), схема вмикання (б) та статична характеристика (в) фоторезистора
Схема вмикання фоторезистора до електричного кола показана на рис. 6.5 б. Увімкнення джерела Е не залежить від полярності, оскільки фоторезистор не має вентильних властивостей.
Вихідним матеріалом виготовлення світлочутливого шару фоторезистора є PbS, CdSe або CdS.
За
відсутності світла (світловий потік
)
фоторезистор має великий темновий
опір, і при прикладенні зовнішньої
напруги через нього протікає малий
темновий струм
.
Під дією світла опір фоторезистора
зменшується, і через нього проходить
струм
=
+
,
(6.1)
де
- коефіцієнт пропорціональності;
-
світловий потік;
-
темновий струм (темновий опір фото
резистора – сотні кілоомів).
Залежність
=
(
)
при
=
відповідно
до формули (6.1) показана на рис. 6.5 в.
При
низьких рівнях освітлення залежність
=
(
)
можна вважати лінійною:
=
+
,
(6.2)
де
- інтегральна чутливість фоторезистора.
Недоліками
фоторезисторів є нелінійність
характеристики
та
мала швидкодія (граничні частоти приладу
не перевищують 1 кГц). Фоторезистори
застосовують як оптоелектронні датчики,
а також як фотоприймачі в оптронах.
6.3.2 Фотодіоди
У
фотодіодах кристал НП обернений до
скляного вікна, через яке надходить
світловий потік. Під дією світла на
–
перехід фотодіода внаслідок явища
внутрішнього фотоефекту в областях
біля переходу відбувається додаткова
генерація пар “електрон-дірка”. Під
дією дифузійного поля
–
переходу фотодірки переміщуються до
області
,
а фотоелектрони – до області
.
При цьому створюється фотоЕРС
=
(0,1
1) В, залежність якої від світлового
потоку показана на рис. 6.6.
Рисунок 6.6 – Залежність фотоЕРС від світлового потоку
Під
дією цієї фотоЕРС у зовнішньому колі
фотодіода протікає фотострум
,
що збігається за напрямком зі зворотним
струмом p-n
–
переходу (рис. 6.7).
Рисунок 6.7 – До пояснення принципу дії фотодіода
Оскільки фотострум протікає незалежно від струму, який викликається зовнішнім джерелом напруги, то вираз для повного струму може бути записаний у вигляді
, (6.3)
де
- струм насичення (екстракції)
–
переходу;
- зовнішня напруга;
- фотострум.
Дія
фотоЕРС на
–
перехід еквівалентна додатковому
зворотному зміщенню переходу, наслідком
чого є збільшення зворотного струму
фотодіода на величину
.
Сім’я ВАХ фотодіода показана на рис. 6.8.
Рисунок 6.8 – Сім’я ВАХ фотодіода
Оскільки
фотоЕРС і пряма напруга ввімкнені
назустріч одна одній, то при їх рівності
струм діода дорівнює нулю, що відповідає
режимові холостого ходу. ЕРС холостого
ходу при
можна визначити за формулою (6.3):
=
.
Цю фотоЕРС знаходять також з ВАХ рис. 6.8.
Фотодіоди використовують у двох режимах: вентильного фотоелемента (рис. 6.9) та фотодіодному (рис. 6.10).
Рисунок 6.9 – Режим вентильного фотоелемента
У
першому режимі фотодіод використовують
як джерело струму, датчик, що генерує
ЕРС
,
у чутливому індикаторі випромінювання
або сонячній батареї. ФотоЕРС може
досягати 1 В.
У цьому режимі робоча точка пересувається
вздовж осі
на ВАХ рис. 6.8 залежно від інтенсивності
світла.
У
другому режимі (рис. 6.10) фотодіод працює
на зворотній гілці ВАХ як фоторезистор,
опір якого залежить від світлового
потоку. Робоча точка може займати
будь-яке положення між осями
,
залежно від напруги джерела
і світлового потоку
.
Рисунок 6.10 – Фотодіодний режим
Фотострум
залежить не тільки від потоку
,
але й від довжини хвилі світлового
випромінювання, яке діє на
–
перехід. Цей факт ілюструє спектральна
характеристика рис. 6.11.
Рисунок 6.11 – Спектральна характеристика германієвого фотодіода
Параметрами фотодіода є:
-
темновий струм
струм, що проходить через діод при
робочій напрузі і відсутності світла;
-
робоча напруга
напруга на діоді у фотодіодному режимі;
інтегральна
чутливість.